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CHAPTER 1                          REINFORCED CONCRETE STRUCTURES 

 

1.1 INTRODUCTION 
 
Many structures are built of reinforced concrete: bridges, viaducts, buildings, retaining walls, 
tunnels, tanks, conduits, and others. 
Reinforced concrete is a logical union of two materials: plain concrete, which possesses high 
compressive strength but little tensile strength, and steel bars embedded in the concrete, 
which can provide the needed strength in tension. 
First practical use of reinforced concrete was known in the mid-1800s. In the first decade of 
the 20th century, progress in reinforced concrete was rapid. Since the mid-1950s, reinforced 
concrete design practice has made the transition from that based on elastic methods to one 
based on strength. 
Understanding of reinforced concrete behavior is still far from complete; building codes and 
specifications that give design procedures are continually changing to reflect latest 
knowledge.  
 

1.2 REINFORCED CONCRETE MEMBERS 
 

Every structure is proportioned as to both architecture and engineering to serve a particular 
function. Form and function go hand in hand, and the beat structural system is the one that 
fulfills most of the needs of the user while being serviceable, attractive, and economically 
cost efficient. Although most structures are designed for a life span of 50 years, the 
durability performance record indicates that properly proportioned concrete structures have 
generally had longer useful lives. 
Reinforced concrete structures consist of a series of “members” (components) that interact 
to support the loads placed on the structures. 
The components can be broadly classified into: 

1. Floor Slabs 
Floor slabs are the main horizontal elements that transmit the moving live loads as well as 
the stationary dead loads to the vertical framing supports of a structure. They can be: 

 Slabs on beams,  
 Waffle slabs,  
 Slabs without beams (Flat Plates) resting directly on columns,  
 Composite slabs on joists.  

They can be proportioned such that they act in one direction (one-way slabs) or 
proportioned so that they act in two perpendicular directions (two-way slabs and flat 
plates).  

2. Beams 
Beams are the structural elements that transmit the tributary loads from floor slabs to 
vertical supporting columns. They are normally cast monolithically with the slabs and are 
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structurally reinforced on one face, the lower tension side, or both the top and bottom 
faces. As they are cast monolithically with the slab, they form a T-beam section for interior 
beams or an L beam at the building exterior. 
The plan dimensions of a slab panel determine whether the floor slab behaves essentially as 
a one-way or two-way slab. 

3. Columns 
The vertical elements support the structural floor system. They are compression members 
subjected in most cases to both bending and axial load and are of major importance in the 
safety considerations of any structure. If a structural system is also composed of horizontal 
compression members, such members would be considered as beam-columns. 

4. Walls 
Walls are the vertical enclosures for building frames. They are not usually or necessarily 
made of concrete but of any material that esthetically fulfills the form and functional needs 
of the structural system. Additionally, structural concrete walls are often necessary as 
foundation walls, stairwell walls, and shear walls that resist horizontal wind loads and 
earthquake-induced loads. 

5. Foundations 
Foundations are the structural concrete elements that transmit the weight of the 
superstructure to the supporting soil. They could be in many forms: 

 Isolated footing - the simplest one. It can be viewed as an inverted slab transmitting 
a distributed load from the soil to the column.  

 Combined footings supporting more than one column. 
 Mat foundations, and rafts which are basically inverted slab and beam construction. 
 Strip footing or wall footing supporting walls. 
 Piles driven to rock. 
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1.3 REINFORCED CONCRETE BEHAVIOR 
 
The addition of steel reinforcement that bonds strongly to concrete produces a relatively 
ductile material capable of transmitting tension and suitable for any structural elements, 
e.g., slabs, beam, columns. Reinforcement should be placed in the locations of anticipated 
tensile stresses and cracking areas. For example, the main reinforcement in a simple beam is 
placed at the bottom fibers where the tensile stresses develop. However, for a cantilever, 
the main reinforcement is at the top of the beam at the location of the maximum negative 
moment. Finally for a continuous beam, a part of the main reinforcement should be placed 
near the bottom fibers where the positive moments exist and the other part is placed at the 
top fibers where the negative moments exist. 
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CHAPTER 2                                MATERIALS, AND PROPERTIES 

 
2.1  CONCRETE 

 
Plain concrete is made by mixing cement, fine aggregate, coarse aggregate, water, and 
frequently admixtures. 
Structural concrete can be classified into: 

 Lightweight concrete with a unit weight from about 1350 𝑡𝑜 1850 𝑘𝑔/𝑚  produced 
from aggregates of expanded shale, clay, slate, and slag. 

 Other lightweight materials such as pumice, scoria, perlite, vermiculite, and diatomite are 
used to produce insulating lightweight concretes ranging in density from about 250 𝑡𝑜 1450 𝑘𝑔/𝑚 . 
 

 Normal-weight concrete with a unit weight from about 1800 𝑡𝑜 2400 𝑘𝑔/𝑚  
produced from the most commonly used aggregates— sand, gravel, crushed stone. 

 Heavyweight concrete with a unit weight from about 3200 𝑡𝑜 5600 𝑘𝑔/𝑚  
produced from such materials such as barite, limonite, magnetite, ilmenite, hematite, 
iron, and steel punching or shot. It is used for shielding against radiations in nuclear 
reactor containers and other structures. 

 
2.2 COMPRESSIVE STRENGTH 

 
The strength of concrete is controlled by the proportioning of cement, coarse and fine 
aggregates, water, and various admixtures. The most important variable is (𝑤/𝑐) ratio. 
Concrete strength (𝑓 ′) – uniaxial compressive strength measured by a compression test of a 
standard test cylinder (150 𝑚𝑚 diameter by 300 𝑚𝑚 high) on the 28th day–ASTM C31, C39. 
In many countries, the standard test unit is the cube (200 × 200 × 200 𝑚𝑚). 
The concrete strength depends on the size and shape of the test specimen and the manner 
of testing. For this reason the cylinder ( 150 𝑚𝑚 by 300 𝑚𝑚 high) strength is 80% of the 150 − 𝑚𝑚 cube strength and 83% of the 200 − 𝑚𝑚 cube strength. 
 
 
 
 
 
 
 
 
 
Stress-strain relationship: Typical curves for specimens (150 × 300 𝑚𝑚 cylinders) loaded in 
compression at 28 days. 

 

ASTM 
cylinder 

 

Cube 

150 𝑚𝑚 300 𝑚𝑚
 150 𝑚𝑚 

150 𝑚𝑚 
150 𝑚𝑚 

𝑓 ′ 𝑓  

𝑓 ′ ≈ 0.80 𝑓  
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Lower-strength concrete has greater 
deformability (ductility) than higher-
strength concrete (length of the portion of 
the curve after the maximum stress is 
reached at a strain between 0.002 and 0.0025).  
Ultimate strain at crushing of concrete 
varies from 0.003 to as high as 0.008. 

 In usual reinforced concrete design  𝑓 ′ of (24 𝑡𝑜 35 𝑀𝑃𝑎) are used for 
nonprestressed structures. 

 𝑓 ′ of (35 to 42 𝑀𝑃𝑎) are used for 
prestressed concrete. 

 𝑓 ′ of (42 to 97 𝑀𝑃𝑎) are used 
particularly in columns of tall 
buildings. 

 
2.3 TENSILE STRENGTH 

 
Concrete tensile strength is about 10 𝑡𝑜 15% of its compressive strength. 
The strength of concrete in tension is an important property that greatly affects that extent 
and size of cracking in structures. 
Tensile strength is usually determined by 
using: 

 Split-cylinder test (ASTM C496).           
A standard 150 × 300 𝑚𝑚 
compression test cylinder is placed on 
its side and loaded in compression 
along a diameter. The splitting tensile 
strength 𝑓  is computed as 𝑓 = 2𝑃𝜋𝑙𝑑 

 Tensile strength in flexure (modulus of rupture) (ASTM C78 or C293). A plain concrete 
beam 150 × 150 𝑚𝑚 × 750 𝑚𝑚 𝑙𝑜𝑛𝑔, is loaded in flexure at the third points of 
600-mm span until it fails due to cracking on the tension face. Modulus of rupture 𝑓  
is computed as 𝑓 = 𝑀𝐼 𝑐 = 6𝑀𝑏ℎ = 6𝑃𝑎𝑏ℎ  

It is accepted (ACI 9.5.2.3) that an average value for 𝑓  may be taken as 𝑓 = 0.62 𝜆 𝑓 ′ ,                   𝑓     𝑖𝑛 𝑀𝑃𝑎  𝑤ℎ𝑒𝑟𝑒                    𝜆 = 1    𝑓𝑜𝑟 𝑛𝑜𝑟𝑚𝑎𝑙𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒. 
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 Direct axial tension test. It is difficult to measure accurately and not in use today. 
 
 

2.4 MODULUS OF ELASTICITY 
 
The modulus of elasticity of concrete varies, unlike that of steel, with strength.  
A typical stress-strain curve for 
concrete in compression is 
shown. The initial modulus 
(tangent at origin), the tangent 
modulus (at 0.5 𝑓 ′), and the 
secant modulus are noted. 
Usually the secant modulus at 
from 25 𝑡𝑜 50% of the 
compressive strength 𝑓 ′ is 
considered to be the modulus 
of elasticity. The empirical 
formula given by ACI-8.5.1 𝐸 = 0.043𝑤 . 𝑓 ′  
For normalweight concrete, 𝐸  

shall be permitted to be taken as   𝐸 = 4700 𝑓 ′, 
where, 1440 ≤ 𝑤 ≤ 2560  𝑘𝑔/𝑚       𝑎𝑛𝑑          𝑓   𝑖𝑛  𝑀𝑃𝑎  . 
 

2.5 CREEP AND SHRINKAGE 
 
Creep and shrinkage are time-dependent deformations that, along with cracking, provide 
the greatest concern for the designer because of the inaccuracies and unknowns that 
surround them. Concrete is elastic only under loads of short duration; and, because of 
additional deformation with time, the effective behavior is that of an inelastic material. 
Deflection after a long period of time is therefore difficult to predict, but its control is 
needed to assure serviceability during the life of the structure. 

𝑏 

ℎ 

𝑎 𝑙

𝑃 𝑃 

𝑎 
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Creep (or plastic flow) is the property of concrete (and other materials) by which it 
continues to deform with time under sustained loads at unit stresses within the accepted 
elastic range (say, below 0.5 𝑓 ). This inelastic deformation increases at a decreasing rate 
during the time of loading, and its total magnitude may be several times as large as the 
short-time elastic deformation. Frequently creep is associated with shrinkage, since both are 
occurring simultaneously and often provide the same net effect: increased deformation with 
time.  
The internal mechanism of creep, or "plastic flow" as it is sometimes called, may be due to 
any one or a combination of the following: (1) crystalline flow in the aggregate and hardened 
cement paste; (2) plastic flow of the cement paste surrounding the aggregate; (3) closing of 
internal voids; and (4) the flow of water out of the cement gel due to external load and 
drying. 
Factors affecting the magnitude of creep are (1) the constituents—such as the composition 
and fineness of the cement, the admixtures, and the size, grading, and mineral content of 
the aggregates: (2) proportions such as water content and water-cement ratio; (3) curing 
temperature and humidity; (4) relative humidity during period of use; (5) age at loading; (6) 
duration of loading; (7) magnitude of stress; (8) surface-volume ratio of the member; and (9) 
slump. 

 
Creep of concrete will often cause an increase in the long-term deflection of members. 
Unlike concrete, steel is not susceptible to creep. For this reason, steel reinforcement is 
often provided in the compression zone of beams to reduce their long-term deflection. 
 
Shrinkage, broadly defined, is the volume change during hardening and curing of the 
concrete. It is unrelated to load application. The main cause of shrinkage is the loss of water 
as the concrete dries and hardens. It is possible for concrete cured continuously under water 
to increase in volume; however, the usual concern is with a decrease in volume. In general, 
the same factors have been found to influence shrinkage strain as those that influence 
creep—primarily those factors related to moisture loss. 
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2.6 STEEL REINFORCEMENT 

 
The useful strength of ordinary reinforcing steels in tension as well as compression, the yield 
strength is about 15 times the compressive strength of common structural concrete and well 
over 100 times its tensile strength. 
 
 
 
 
 
 
 
 
 
 
 
Steel reinforcement may consist of : 

 Bars (deformed bars, as in picture below) – for usual construction. 
 Welded wire fabric – is used in thins slabs, 

thin shells. 
 Wires – are used for prestressed concrete. 

The “Grade” of steel is the minimum specified yield 
stress (point) expressed in: 

 𝑀𝑃𝑎 for SI reinforcing bar Grades 300, 350, 
420, and 520. 

 𝑘𝑠𝑖 for Inch-Pound reinforcing bar Grades 
40, 50, 60, and 75.  

The introduction of carbon and alloying additives in 
steel increases its strength but reduces its ductility. 
The proportion of carbon used in structural steels 
varies between 0.2% and 0.3%. 
The steel modulus of elasticity  (𝐸 ) is constant for 
all types of steel. The ACI Code has adopted a value of  𝐸 = 2 × 10  𝑀𝑃𝑎 (29 × 10  𝑝𝑠𝑖 ). 
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CHAPTER 3                      DESIGN METHODS AND REQUIREMENTS 
 
 

3.1 ACI BUILDING CODE 
 

When two different materials, such as steel and concrete, act together, it is understandable 
that the analysis for strength of a reinforced concrete member has to be partly empirical. 
These principles and methods are being constantly revised and improved as results of 
theoretical and experimental research accumulate. The American Concrete Institute (ACI), 
serving as a clearinghouse for these changes, issues building code requirements, the most 
recent of which is the Building Code Requirements for Structural Concrete (ACI 318-08), 
hereafter referred to as the ACI Code. 
The ACI Code is a Standard of the American Concrete Institute. In order to achieve legal 
status, it must be adopted by a governing body as a part of its general building code. The ACI 
Code is partly a specification-type code, which gives acceptable design and construction 
methods in detail, and partly a performance code, which states desired results rather than 
details of how such results are to be obtained. A building code, legally adopted, is intended 
to prevent people from being harmed; therefore, it specifies minimum requirements to 
provide adequate safety and serviceability. It is important to realize that a building code is 
not a recommended practice, nor is it a design handbook, nor is it intended to replace 
engineering knowledge, judgment, or experience. It does not relieve the designer of the 
responsibility for having a safe, economical structure. 
ACI 318M-08 – Building Code Requirements for Structural Concrete and Commentary. 
Two philosophies of design have long been prevalent: 

 The working stress method (1900 – 1960). 
 The strength design method (1960 till now, with few exceptions). 

 
3.2 WORKING STRESS METHOD 

 
In the working stress method, a structural element is so designed that the stresses resulting 
from the action of service loads (also called working loads) and computed by the mechanics 
of elastic members do not exceed some predesignated allowable values. 
Service load is the load, such as dead, live, snow, wind, and earthquake, which is assumed 
actually to occur when the structure is in service. 
The working stress method may be expressed by the following: 𝑓 ≤ 𝑓  
where  𝑓 −  an elastic stress, such as by using the flexure formula 𝑓 = 𝑀𝑐/𝐼  for a beam, computed 
under service load. 𝑓 − a limiting or allowable stress prescribed by a building code as a percentage of the 
compressive strength 𝑓  for concrete, or of the yield stress for the steel reinforcing bars. 
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3.3 STRENGTH DESIGN METHOD 
 
In the strength design method (formerly called ultimate strength method), the service loads 
are increased by factors to obtain the load at which failure is considered to be "imminent". 
This load is called the factored load or factored service load. The structure or structural 
element is then proportioned such that the strength is reached when the factored load is 
acting. The computation of this strength takes into account the nonlinear stress-strain 
behavior of concrete. 
The strength design method may be expressed by the following, 

strength provided ≥ [strength required to carry factored loads] 

where the "strength provided" (such as moment strength) is computed in accordance with 
the provisions of a building code, and the "strength required" is that obtained by performing 
a structural analysis using factored loads. 
 

3.4 SAFETY PROVISIONS 
 
Structures and structural members must always be designed to carry some reserve load 
above what is expected under normal use. Such reserve capacity is provided to account for a 
variety of factors, which may be grouped in two general categories:  

 factors relating to overload   
 factors relating to understrength (that is, less strength than computed by 

acceptable calculating procedures).  
Overloads may arise from changing the use for which the structure was designed, from 
underestimation of the effects of loads by oversimplification in calculation procedures, and 
from effects of construction sequence and methods. Understrength may result from adverse 
variations in material strength, workmanship, dimensions, control, and degree of 
supervision, even though individually these items are within required tolerances. 
In the strength design method, the member is designed to resist factored loads, which are 
obtained by multiplying the service loads by load factors. Different factors are used for 
different loadings. Because dead loads can be estimated quite accurately, their load factors 
are smaller than those of live loads, which have a high degree of uncertainty. Several load 
combinations must be considered in the design to compute the maximum and minimum 
design forces. Reduction factors are used for some combinations of loads to reflect the low 
probability of their simultaneous occurrences. The ACI Code presents specific values of load 
factors to be used in the design of concrete structures. 
In addition to load factors, the ACI Code specifies another factor to allow an additional 
reserve in the capacity of the structural member. The nominal strength is generally 
calculated using accepted analytical procedure based on statistics and equilibrium; however, 
in order to account for the degree of accuracy within which the nominal strength can be 
calculated, and for adverse variations in materials and dimensions, a strength reduction 
factor, ϕ, should be used in the strength design method.  
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To summarize the above discussion, the ACI Code has separated the safety provision into an 
overload or load factor and to an undercapacity (or strength reduction) factor, 𝜙. A safe 
design is achieved when the structure's strength, obtained by multiplying the nominal 
strength by the reduction factor, 𝜙, exceeds or equals the strength needed to withstand the 
factored loadings (service loads times their load factors). 
The requirement for strength design may be expressed: Design strength ≥ Factored load (i. e. , required strength) 𝜙𝑃 ≥ 𝑃  𝜙𝑀 ≥ 𝑀  𝜙𝑉 ≥ 𝑉  
where 𝑃 , 𝑀 , and 𝑉  are "nominal" strengths in axial compression, bending moment, and 
shear, respectively, using the subscript n.  𝑃 , 𝑀 , and 𝑉  are the factored load effects in axial compression, bending moment, and 
shear, respectively, using the subscript u. 
Given a load factor of 1.2 for dead load and a load factor of 1.6 for live load, the overall 
safety factor for a structure loaded be a dead load, 𝐷, and a live load, 𝐿, is Factor of Safety = 1.2𝐷 + 1.6 𝐿𝐷 + 𝐿 1𝜙  

 
3.5 LOAD FACTORS AND STRENGTH REDUCTION FACTORS 

 
Overload Factors 𝑼 
The factors 𝑈 for overload as given by ACI-9.2 are: 𝑈 = 1.4(𝐷 + 𝐹) 𝑈 = 1.2(𝐷 + 𝐹 + 𝑇) + 1.6(𝐿 + 𝐻) + 0.5(𝐿  𝑜𝑟  𝑆 𝑜𝑟 𝑅) 𝑈 = 1.2𝐷 + 1.6(𝐿  𝑜𝑟  𝑆 𝑜𝑟 𝑅) + (1.0𝐿 𝑜𝑟 0.8𝑊) 𝑈 = 1.2𝐷 + 1.6𝑊 + 1.0𝐿 + 0.5(𝐿  𝑜𝑟  𝑆 𝑜𝑟 𝑅) 𝑈 = 1.2𝐷 + 1.0𝐸 + 1.0𝐿 + 0.2𝑆 𝑈 = 0.9𝐷 + 1.6𝑊 + 1.6𝐻 𝑈 = 0.9𝐷 + 1.0𝐸 + 1.6𝐻 

where 
 𝐷 - dead load;                   𝐿 - live load;                    𝐿 - roof live load;                   𝑆 - snow load;        𝑅 - rain load;                   𝑊 - wind load;             𝐸 - earthquake load;            𝐹 - load due to 
weights and pressures of fluids with well-defined densities and controllable maximum 
heights;                𝐻 - load due to weight and pressure of soil, water in soil or other materials; 
 𝑇 - the cumulative effect of temperature, creep, shrinkage, differential settlement, and 
shrinkage compensating concrete.  
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Strength Reduction Factors 𝜙 
The factors 𝜙 for understrength are called strength reduction factors according to ACI-9.3. 
and are as follows: 

Strength Condition 𝝓 𝐅𝐚𝐜𝐭𝐨𝐫𝐬 

1. Flexure (with or without axial force)  
Tension-controlled sections ……………………………………………………. 0.90 
Compression-controlled sections  

Spirally reinforced ………………………………………………….. 0.75 
Others …………………………………………………………………… 0.65 

2. Shear and torsion ………………………………………………………………………………. 0.75 
3. Bearing on concrete …………………………………………………………………………… 0.65 
4. Post-tensioned anchorage zones ……………………………………………………….. 0.85 
5. Struts, ties, nodal zones, and bearing areas in strut-and-tie models ….. 0.75 

 
Example: 
A simple beam is loaded with a dead load of 40 𝐾𝑁/𝑚 and a live load of 30 𝐾𝑁/𝑚. Check 
the strength requirement according to ACI code if the nominal bending moment              𝑀 = 275 𝐾𝑁. 𝑚 
 
 
 
 
 
 
 
 
 
 
Solution: 𝑀 = 275 𝐾𝑁. 𝑚                          𝑎𝑛𝑑       𝜙 = 0.9 𝑤 = 1.2𝐷 + 1.6𝐿 = 1.2 ∙ 40 + 1.6 ∙ 30 = 96  𝐾𝑁/𝑚 

𝑀 = 𝑀 = 𝑤 𝑙8 = 96 ∙ 4.58 = 243 𝐾𝑁 ∙ 𝑚 

𝜙𝑀 ≥ 𝑀  0.9 ∙ 275 = 247.5 𝐾𝑁 ∙ 𝑚 > 243 𝐾𝑁 ∙ 𝑚          OK       Strength requirement is satisfied 

Factor of Safety = 1.2𝐷 + 1.6 𝐿𝐷 + 𝐿 1𝜙 = 9640 + 30 10.9 = 1.52 

4.5 m 

3  25 

2  14 
2  14 

3  25 



  16 
 

CHAPTER 4                                   FLEXURE IN BEAMS 
 

4.1 INTRODUCTION 
Reinforced concrete beams are nonhomogeneous in that they are made of two entirely 
different materials. The methods used in the analysis of reinforced concrete beams are 
therefore different from those used in the design or investigation of beams composed 
entirely of steel, wood, or any other structural material. 
Two different types of problems arise in the study of reinforced concrete: 

1. Analysis. Given a cross section, concrete strength, reinforcement size and location, 
and yield strength, compute the resistance or strength. In analysis there should be 
one unique answer. 

2. Design. Given a factored design moment, normally designated as 𝑀 . select a 
suitable cross section, including dimensions, concrete strength, reinforcement, and 
so on. In design there are many possible solutions. 

The Strength Design Method requires the conditions of static equilibrium and strain 
compatibility across the depth of the section to be satisfied. 
The following are the assumptions for Strength Design Method: 

1. Strains in reinforcement and concrete are directly proportional to the distance from 
neutral axis. This implies that the variation of strains across the section is linear, and 
unknown values can be computed from the known values of strain through a linear 
relationship. 

2. Concrete sections are considered to have reached their flexural capacities when they 
develop 0.003 strain in the extreme compression fiber. 

3. Stress in reinforcement varies linearly with strain up to the specified yield strength. 
The stress remains constant beyond this point as strains continue increasing. This 
implies that the strain hardening of steel is ignored. 

4. Tensile strength of concrete is neglected. 
5. Compressive stress distribution of concrete can be represented by the corresponding 

stress-strain relationship of concrete. This stress distribution may be simplified by a 
rectangular stress distribution as described later. 

 
4.2 REINFORCED CONCRETE BEAM BEHAVIOR 

 
Consider a simply supported and reinforced concrete beam with uniformly distributed load 
on top. Under such loading and support conditions, flexure-induced stresses will cause 
compression at the top and tension at the bottom of the beam. Concrete, which is strong in 
compression, but weak in tension, resists the force in the compression zone, while steel 
reinforcing bars are placed in the bottom of the beam to resist the tension force. As the 
applied load is gradually increased from zero to failure of the beam (ultimate condition), the 
beam may be expected to behave in the following manner: 
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Stage I: when the applied load is low, the stress 
distribution is essentially linear over the depth 
of the section. The tensile stresses in the 
concrete are low enough so that the entire 
cross-section remains uncracked and the stress 
distribution is as shown in (a). In the compression zone, the concrete stresses are low 
enough (less than about 0.5 𝑓 ) so that their distribution is approximately linear. 
Stage II: On increasing the applied load, the 
tensile stresses at the bottom of the beam 
become high enough to exceed the tensile 
strength at which the concrete cracks. After 
cracking, the tensile force is resisted mainly 
by the steel reinforcement. Immediately 
below the neutral axis, a small portion of the 
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beam remains uncracked. These tensile stresses in the concrete offer, however, only a small 
contribution to the flexural strength. The concrete stress distribution in the compression 
zone becomes nonlinear. 
Stage III: at nominal (so,-called ultimate) strength, the neutral axis has moved farther up-
ward as flexural cracks penetrate more and more toward the compression face. The steel 
reinforcement has yielded and the 
concrete stress distribution in the 
compression zone becomes more 
nonlinear. Below the neutral axis, 
the concrete is cracked except for 
a very small zone.  
At the ultimate stage, two types of 
failure can be noticed. If the beam is reinforced with a small amount of steel, ductile failure 
will occur. In this type of failure, the steel yields and the concrete crushes after experiencing 
large deflections and lots of cracks. On the other hand, if the beam is reinforced with a large 
amount of steel, brittle failure will occur. The failure in this case is sudden and occurs due to 
the crushing of concrete in the compression zone without yielding of the steel and under 
relatively small deflections and cracks. This is not a preferred mode of failure because it does 
not give enough warning before final collapse. 
 

4.3 THE EQUIVALENT RECTANGULAR COMPRESSIVE STRESS DISTRIBUTION  
(COMPRESSIVE STRESS BLOCK) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The actual distribution of the compressive stress in a section has the form of rising parabola. 
It is time consuming to evaluate the volume of compressive stress block. An equivalent 
rectangular stress block can be used without loss of accuracy. 



  19 
 

The flexural strength 𝑀 , using the equivalent 
rectangular, is obtained as follows: 
 𝐶 = 0.85 𝑓 𝑎𝑏 𝑇 = 𝐴 𝑓  

 ∑ 𝐹 = 0         gives       𝑇 = 𝐶 
 𝐴 𝑓 = 0.85 𝑓 𝑎𝑏 
or  𝑎 = 𝐴 𝑓0.85 𝑓 𝑏 𝑀 = 𝑇 𝑑 − 𝑎2 = 𝐶 𝑑 − 𝑎2  𝑀 = 𝐴 𝑓 𝑑 − 𝑎2                       𝑜𝑟                𝑀 = 0.85 𝑓 𝑎𝑏 𝑑 − 𝑎2  

Notation:  𝑎 − depth of rectangular compressive stress block, 𝑏 − width of the beam at the compression side, 𝑐 − depth of the neutral axis measured from the extreme compression fibers, 𝑑 − effective depth of the beam,  measured from the extreme compression fibers to the 
centroid of the steel area, ℎ − total depth of the beam, 𝜀 − strain in extreme compression fibers, 𝜀 − strain at tension steel, 𝑓 − compressive strength of concrete, 𝑓 − yield stress of steel, 𝐴 − area of the tension steel, 𝐶 − resultant compression force in concrete, 𝑇 − resultant tension force in steel, 𝑀 − nominal moment strength of the section. 

 
Example: 
Determine the nominal moment strength of the beam section. Take 𝑓 = 20 𝑀𝑃𝑎, 𝑓 = 400 𝑀𝑃𝑎. 
Solution: 𝐴 (3  25) = 14.72 𝑐𝑚  𝑎 = 𝐴 𝑓0.85 𝑓 𝑏 = 14.72 ∙ 100 ∙ 4000.85 ∙ 20 ∙ 350 = 98.96 𝑚𝑚 𝑀 = 𝐴 𝑓 𝑑 − 𝑎2 = 14.72 ∙ 100 ∙ 400 540 − 98.962 ∙ 10 = = 288.82 𝐾𝑁 ∙ 𝑚 
 

3  25 

d=
54

 c
m

 

h=
60

 c
m

 

b=35 cm 
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4.4 TYPES OF FAILURE AND STRAIN LIMITS 
 
Types of failure 

Three types of flexural failure of a structural member can be expected depending on the 
percentage of steel used in the section. 

1. Steel may reach its yield strength before the concrete reaches its maximum strength, 
In this case, the failure is due to the yielding of steel reaching a high strain equal to or 
greater than 0.005. The section contains a relatively small amount of steel and is 
called a tension-controlled section. 

 
 
 
 
 
 
 
 
 
 

2. Steel may reach its yield 
strength at the same time as 
concrete reaches its ultimate 
strength. The section is called a 
balanced section. 

 
 
 

3. Concrete may fail before the 
yield of steel, due to the 
presence of a high percentage of 
steel in the section. In this case, 
the concrete strength and its 
maximum strain of 0.003 are 
reached, but the steel stress is 
less than the yield strength, that 
is, 𝑓  is less than 𝑓 . The strain in 
the steel is equal to or less than 0.002. This section is called a compression-
controlled section. 

 
The ACI Code assumes that concrete fails in compression when the concrete strain reaches 0.003.  
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In beams designed as tension-controlled sections, steel yields before the crushing of con-
crete. Cracks widen extensively, giving warning before the concrete crushes and the struc-
ture collapses. The ACI Code adopts this type of design. In beams designed as balanced or 
compression-controlled sections, the concrete fails suddenly, and the beam collapses 
immediately without warning. The ACI Code does not allow this type of design. 
 
Strain Limits for Tension and Tension-Controlled Sections 

The ACI Code, Section 10.3. defines the concept of tension or compression-controlled 
sections in terms of net tensile strain 𝜀  (net tensile strain in the reinforcement closest to the 
tension face). Moreover, two other conditions may develop: (1) the balanced strain 
condition and (2) the transition region condition.  
These four conditions are defined as follows: 

1. Compression-controlled sections are those sections in which 𝜀  at nominal strength is 
equal to or less than the compression-controlled strain limit (the compression-
controlled strain limit may be taken as a net strain of 𝜀 = 0.002 − for                     𝑓 = 400 𝑀𝑃𝑎 ) at the time when concrete in compression reaches its assumed 
strain limit of 0.003, (𝜀 =  0.003). This case occurs mainly in columns subjected to 
axial forces and moments. 

2. Tension-controlled sections are those sections in which the 𝜀  is equal to or greater 
than 0.005 just as the concrete in the compression reaches its assumed strain limit of 0.003 

3. Sections in which the 𝜀  lies between the compression-controlled strain limit of 0.002 
(for 𝑓 = 400 𝑀𝑃𝑎) and the tension-controlled strain limit of 0.005 constitute the 
transition region. 

4. The balanced strain condition develops in the section when the tension steel, with 

the first yield, reaches a strain corresponding to its yield strength, 𝑓  or 𝜀 =  , just 

as the maximum strain in concrete at the extreme compression fibers reaches 0.003. 
In addition to the above four conditions, Section 10.3.5 of the ACI Code indicates that the 
net tensile strain, 𝜀 , at nominal strength, within the transition region, shall not be less than 0.004 for reinforced concrete flexural members without or with an axial load less than      
0.10 𝑓 𝐴 , where 𝐴 = gross area of the concrete section. 
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Note that in cases where strain is less than 0.005 namely, the section is in the transition 
zone, a value of the reduction 𝜙 lower than 0.9 for flexural has to be used for final design 
moment, with a strain not less than 0.004 as a limit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For transition region 𝜙 may be determined by linear interpolation: 𝜙 = 0.75 + (𝜀 − 0.002)50 −  𝑓𝑜𝑟 𝑠𝑝𝑖𝑟𝑎𝑙 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝜙 = 0.65 + (𝜀 − 0.002) 2503 −  𝑓𝑜𝑟 𝑜𝑡ℎ𝑒𝑟 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 

 

4.5 THE BALANCED CONDITION 
 
Let us consider the case of balanced section, which implies that at ultimate load the strain in 

concrete equals 0.003 and that of steel equals 𝜀 =   (at distance 𝑑 ). 

 
 
 
 
 
 
 
 
 
 𝑐0.003 = 𝑑0.003 + 𝑓𝐸 ,                   𝑜𝑟                        𝑐 = 𝑑0.003 + 𝑓𝐸 0.003 

Substituting  𝐸 = 200 000 𝑀𝑃𝑎 
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𝑐 = 600600 + 𝑓 𝑑 

From equation of equilibrium ∑ 𝐹 = 0 𝑇 = 𝐶                         ⟹                    𝐴 𝑓 = 0.85 𝑓 𝑎𝑏 𝑎 − the depth of compressive block  and equal  𝑎 = 𝛽 𝑐.  
For balanced condition, 𝑎 = 𝛽 𝑐 . 
where 𝛽  as defined in ACI 10.2.7.3 equal: 𝛽 = 0.85 − 0.007(𝑓 − 28)                     0.65 ≤ 𝛽 ≤ 0.85 

The reinforcement ratio for tension steel 𝜌 = 𝐴𝑏𝑑          𝑎𝑛𝑑 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜 𝜌 = (𝐴 )𝑏𝑑  (𝐴 )𝑏𝑑 = 0.85 𝑓𝑓 𝛽 600600 + 𝑓  

𝜌 = 0.85 𝑓𝑓 𝛽 600600 + 𝑓  

 
4.6 UPPER AND LOWER (MINIMUM) STEEL PERCENTAGES. 

 
The maximum reinforcement ratio 𝜌  that ensures a minimum net tensile steel strain of 
0.004. 𝜌 (𝜀 = 0.004) = 0.003 + 𝜀0.003 + 0.004 𝜌 = 0.003 + 𝜀0.007 𝜌 = 𝜌  

For Grade 420 reinforcing bars  𝜀 = 0.002, then  

𝜌 = 0.003 + 0.0020.007 𝜌 = 0.0050.007 𝜌 = 0.724𝜌  

If the factored moment applied on a beam is very small and the dimensions of the section 
are specified (as is sometimes required architecturally) and are larger than needed to resist 
the factored moment, the calculation may show that very small or no steel reinforcement is 
required. The ACI Code, 10.5, specifies a minimum steel area, 𝐴 ,  𝐴 , = 0.25 𝑓𝑓 𝑏 𝑑 

and not less than 𝐴 , = 1.4𝑓 𝑏 𝑑 

The above requirements of 𝐴 ,  need not be applied if, at every section, 𝐴  provided is at 
least one-third greater than that required by analysis (𝐴 , ≥ 1.33𝐴 , ). This 
exception provides sufficient additional reinforcement in large members where the amount 
required by the above equations would be excessive. 
 𝑏 − width of section, width of web for T-section, 𝑚𝑚. 
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4.7 SPACING LIMITS AND CONCRETE PROTECTION FOR REINFORCEMENT. 
 

The minimum limits were originally established to permit concrete to flow readily into 
spaces between bars and between bars and forms without honeycomb, and to ensure 
against concentration of bars on a line that 
may cause shear or shrinkage cracking. 
According to ACI 7.6. The minimum clear 
spacing between parallel bars in a layer 
shall be 𝑑 , but not less than 25 𝑚𝑚. 
Where parallel reinforcement is placed in 
two or more layers, bars in the upper 
layers shall be placed directly above bars in 
the bottom layer with clear distance between layers not less than 25 𝑚𝑚. 
In addition, the nominal maximum size 
of coarse aggregate shall be not larger 
than: 

(a) 1/5 the narrowest dimension 
between sides of forms, nor 
(b) 1/3 the depth of slabs, nor 
(c) 3/4 the minimum clear spacing between individual reinforcing bars or wires, bundles 
of bars, individual tendons, bundled tendons, or ducts.  

Concrete cover as protection of reinforcement against weather and other effects is 
measured from the concrete surface to the outermost surface of the steel to which the 
cover requirement applies. Where concrete cover is prescribed for a class of structural 
members, it is measured to the outer edge of stirrups, ties, or spirals if transverse 
reinforcement encloses main bars. According to ACI, 7.7, minimum clear cover in cast-in-
place concrete beams and columns should not be less than 40 𝑚𝑚. 
To limit the widths of flexural cracks in beams and slabs, ACI Code Section 10.6.4 defines 
upper limit on the center-to-center spacing between bars in the layer of reinforcement 
closest to the tension face of a member. In some cases, this requirement could force a 
designer to select a larger number of smaller bars in the extreme layer of tension 
reinforcement. The spacing limit is: 𝑠 = 380 280𝑓 − 2.5𝐶                           but                               𝑠 ≤ 300 280𝑓  

where 𝐶  is the least distance from surface of reinforcement to the tension face. It shall be 

permitted to take 𝑓  as  𝑓 . 

 
4.8 ANALYSIS OF SINGLY REINFORCED CONCRETE RECTANGULAR SECTIONS FOR 

FLEXURE. 
 

Given: section dimensions 𝑏, ℎ; reinforcement 𝐴 ; material strength 𝑓 , 𝑓 . 
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Required: 𝑀 − Nominal moment strength. 

𝑇 = 𝐶          ⟹           𝐴 𝑓 = 0.85 𝑓 𝑎𝑏            ⟹                  𝑎 = 𝐴 𝑓0.85 𝑓 𝑏 

𝑀 = 𝑇 𝑑 − 𝑎2 = 𝐶 𝑑 − 𝑎2  𝑀 = 𝐴 𝑓 𝑑 − 𝑎2                       𝑜𝑟                𝑀 = 0.85 𝑓 𝑎𝑏 𝑑 − 𝑎2  

 
Example: 
Determine the nominal moment strength of the 
beam section. Take 𝑓 = 30 𝑀𝑃𝑎, 𝑓 = 420 𝑀𝑃𝑎. 
Solution: 𝐴 (12  18) = 30.536 𝑐𝑚 = 3053.6 𝑚𝑚  𝑎 = 𝐴 𝑓0.85 𝑓 𝑏 = 3053.6 ∙ 4200.85 ∙ 30 ∙ 900 = 55.88 𝑚𝑚 

𝑑 = 320 − 40 − 10 − 182 = 261 𝑚𝑚 

𝑀 = 𝐴 𝑓 𝑑 − 𝑎2 = 3053.6 ∙ 420 261 − 55.882 ∙ 10 = 298.9 𝐾𝑁 ∙ 𝑚 

Check for strain: 𝜀 = 0.003 𝑑 − 𝑐𝑐  𝑐 = 𝑎𝛽 ,                        𝛽 = 0.85 − 0.007(𝑓 − 28) = 0.85 − 0.007(30 − 28) = 0.836 

𝑐 = 55.880.836 = 66.84 𝑚𝑚 

𝜀 = 0.003 261 − 66.8466.84 = 0.00871 > 0.005 

Take 𝜙 = 0.9 𝑓𝑜𝑟 𝑓𝑙𝑒𝑥𝑢𝑟𝑒 𝜙𝑀 = 0.9 ∙ 298.9 = 269.01 𝐾𝑁 ∙ 𝑚 

 

4.9 DESIGN OF SINGLY REINFORCED CONCRETE RECTANGULAR SECTIONS FOR 
FLEXURE. 

 
Given: 𝑀 − factored moment (𝑀 ≤ 𝜙𝑀 ); material strength 𝑓 , 𝑓 . 

Required: section dimensions 𝑏, ℎ; reinforcement 𝐴 . 

The two conditions of equilibrium are 𝑇 = 𝐶                                                                               (1)                     

ℎ=32
0 𝑚𝑚 

𝑏 = 900 𝑚𝑚 
12 18 
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𝑀 = 𝑇 𝑑 − 𝑎2 = 𝐶 𝑑 − 𝑎2                                                            (2) 

Reinforcement ratio 𝜌 = 𝐴𝑏𝑑         𝑜𝑟      𝐴 = 𝜌𝑏𝑑 

Substituting into (1) 𝜌𝑏𝑑𝑓 = 0.85 𝑓 𝑎𝑏 𝑎 = 𝜌 𝑓0.85𝑓 𝑑                                                                    (3) 

Substituting (3) into (2) 𝑀 = 𝜌𝑏𝑑𝑓 𝑑 − 𝜌2 𝑓0.85𝑓 𝑑                                                        (4) 

A strength coefficient of resistance 𝑅  is obtained by dividing (4) by  (𝑏𝑑 )  and letting  𝑚 = 𝑓0.85𝑓  

Thus 𝑅 = 𝑀𝑏𝑑 = 𝜌𝑓 1 − 𝜌𝑚2                                                             (5) 

From which 𝜌 may be determined  

𝜌 = 1𝑚 1 − 1 − 2𝑚𝑅𝑓                                                            (6) 

Design Procedure: 

1. Set 𝑀 =  𝜙𝑀 = 𝜙𝑅  𝑏𝑑  

2. For ductile behavior such that beam is well into the tension controlled zone, a 

reinforcement percentage 𝜌 should be chosen in the range of (40 − 60)%  of 𝜌 . 

Assume 𝜌 = (0.4 − 0.6)𝜌 . 𝜌 = 0.85 𝑓𝑓 𝛽 600600 + 𝑓 . 
 

3. Find the flexural resistance factor 𝑅  𝑅 = 𝜌𝑓 1 − 𝜌𝑚2 ,                         𝑚 = 𝑓0.85𝑓  

4. Determine the required dimensions  𝑏, 𝑑 𝑏𝑑 = 𝑀𝑅 = 𝑀𝜙𝑅   
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5. Determine the required steel area for the chosen 𝑏, 𝑑 𝐴 = 𝜌𝑏𝑑 

Where 

𝜌 = 1𝑚 1 − 1 − 2𝑚𝑅𝑓 ,                       𝑅 = 𝑀𝑏𝑑 ,                     𝑚 = 𝑓0.85𝑓  

6. Check for minimum steel reinforcement area 𝐴 , = 0.25 𝑓𝑓 𝑏 𝑑 ≥ 1.4𝑓 𝑏 𝑑 

Or  𝜌 = 0.25 𝑓𝑓 ≥ 1.4𝑓  𝐼𝑓      𝐴 , ≥ 43 𝐴 ,    −      𝑁𝑂 𝑛𝑒𝑒𝑑 𝑡𝑜 𝑢𝑠𝑒 𝐴 ,  

7. Check for strain (𝜀 ≥ 0.005) – tension-controlled section. 
8. Check for steel bars arrangement in section. 

 

Example: 
Calculate the area of steel reinforcement required for the beam. 𝑀 = 360 𝐾𝑁 ∙ 𝑚  
Take 𝑓 = 30 𝑀𝑃𝑎, 𝑓 = 400 𝑀𝑃𝑎. 
Assume  25  with one layer arrangement. 

Solution: 𝑑 = ℎ − 𝑐𝑜𝑣𝑒𝑟 − stirrups − bar2 = 650 − 40 − 10 − 252 = 587.5 𝑚𝑚 

Take 𝜙 = 0.9 𝑓𝑜𝑟 𝑓𝑙𝑒𝑥𝑢𝑟𝑒 𝑅 = 𝑀𝑏𝑑 = 𝑀𝜙𝑏𝑑 = 360 ∙ 100.9 ∙ 300 ∙ 587.5 = 3.86 𝑀𝑃𝑎  
𝑚 = 𝑓0.85𝑓 = 4000.85 ∙ 30 = 15.69 
𝜌 = 1𝑚 1 − 1 − 2𝑚𝑅𝑓 = 115.69 1 − 1 − 2 ∙ 15.69 ∙ 3.86400 = 0.0105 

𝐴 = 𝜌𝑏𝑑 = 0.0105 ∙ 300 ∙ 587.5 = 1850.625 𝑚𝑚  𝐴 , = 0.25 𝑓𝑓 𝑏 𝑑 ≥ 1.4𝑓 𝑏 𝑑 

𝐴 , = 0.25 √30400 300 ∙ 587.5 = 603.35 𝑚𝑚   

ℎ=65
0 𝑚𝑚 

𝑏 = 300 𝑚𝑚
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𝐴 , = 1.4400 300 ∙ 587.5 =  617 𝑚𝑚     − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝐴 = 1850.625 𝑚𝑚 > 𝐴 , = 617 𝑚𝑚   − 𝑂𝐾 

Use 4  25  with 𝐴 (4  25) = 19.634 𝑐𝑚 >  𝐴 , = 18.5 𝑐𝑚     − 𝑂𝐾 

Check for strain: 𝑎 = 𝐴 𝑓0.85 𝑓 𝑏 = 1963.4 ∙ 4000.85 ∙ 30 ∙ 300 = 102.66 𝑚𝑚 

𝑐 = 𝑎𝛽 ,                        𝛽 = 0.85 − 0.007(𝑓 − 28) = 0.85 − 0.007(30 − 28) = 0.836 

𝑐 = 102.660.836 = 122.8 𝑚𝑚 

𝜀 = 0.003 𝑑 − 𝑐𝑐 = 0.003 587.5 − 122.8122.8 = 0.01135 > 0.005           𝑂𝐾 

Check for bar placement: 𝑆 = 300 − 40 × 2 − 10 × 2 − 4 × 253 = 33.33 𝑚𝑚 > 𝑑 = 25 𝑚𝑚,   > 25 𝑚𝑚       𝑂𝐾 

 
Example: 
Select an economical rectangular beam sizes and select bars using ACI 
strength method. The beam is a simply supported span of a 12 𝑚 and it 
is to carry a live load of 20 𝐾𝑁/𝑚 and a dead load of 25 𝐾𝑁/𝑚 
including beam weight. 
 Take 𝑓 = 28 𝑀𝑃𝑎, 𝑓 = 400 𝑀𝑃𝑎. 
Assume 𝑑 ≈ 2𝑏 

Solution: 𝑤 = 1.2𝐷𝐿 + 1.6𝐿𝐿 = 1.2 ∙ 25 + 1.6 ∙ 20 = 62 𝐾𝑁/𝑚 𝑀 = 𝑀 = 𝑤 𝑙8 = 62 ∙ 128 = 1116 𝐾𝑁 ∙ 𝑚 

Take 𝜙 = 0.9 for flexure as tension-controlled section 

Assume 𝜌 = 0.4𝜌 . 

Take 𝛽 = 0.85  (𝑓 = 28 𝑀𝑃𝑎) 𝜌 = 0.85 𝑓𝑓 𝛽 600600 + 𝑓 = 0.85 28400 0.85 600600 + 400 = 0.030345             𝜌 = 0.4𝜌 = 0.4 ∙ 0.030345 = 0.012138 𝑚 = 𝑓0.85𝑓 = 4000.85 ∙ 28 = 16.807 

𝑅 = 𝜌𝑓 1 − 𝜌𝑚2 = 0.012138 ∙ 400 1 − 0.012138 ∙ 16.8072 = 4.36 𝑀𝑃𝑎 

h 
b 
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𝑏𝑑 = 𝑀𝜙𝑅 = 1116 ∙ 100.9 ∙ 4.36 = 4𝑏          →     𝑏 = 1116 ∙ 104 ∙ 0.9 ∙ 4.36 = 414.28 𝑚𝑚 

Take 𝑏 = 400 𝑚𝑚 and 𝑑 = 2𝑏 = 2 ∙ 400 = 800 𝑚𝑚 𝑅 = 𝑀𝜙𝑏𝑑 = 1116 ∙ 100.9 ∙ 400 ∙ 800 = 4.84 𝑀𝑃𝑎 

𝜌 = 1𝑚 1 − 1 − 2𝑚𝑅𝑓 = 116.807 1 − 1 − 2 ∙ 16.807 ∙ 4.84400 = 0.01367 

𝐴 = 𝜌𝑏𝑑 = 0.01367 ∙ 400 ∙ 800 = 4374.54 𝑚𝑚  𝐴 , = 0.25 𝑓𝑓 𝑏 𝑑 ≥ 1.4𝑓 𝑏 𝑑 

𝐴 , = 0.25 √28400 400 ∙ 800 = 1058.3 𝑚𝑚   
𝐴 , = 1.4400 400 ∙ 800 =  1120 𝑚𝑚     − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝐴 = 4374.54 𝑚𝑚 > 𝐴 , = 1120 𝑚𝑚   − 𝑂𝐾 

Take 4  28 + 4  25  in two layers with 

 𝐴 = 24.63 + 19.635 = 44.265 𝑐𝑚 >  𝐴 , = 43.74 𝑐𝑚     − 𝑂𝐾 

Check for strain: 𝑎 = 𝐴 𝑓0.85 𝑓 𝑏 = 4426.5  ∙ 4000.85 ∙ 28 ∙ 400 = 185.99 𝑚𝑚 

𝑐 = 𝑎𝛽 = 185.990.85 = 218.81 𝑚𝑚   
𝑑 = 𝑑 + 𝑆2 + 𝑑2 = 800 + 252 + 282 = 826.5 𝑚𝑚 

𝜀 = 0.003 𝑑 − 𝑐𝑐 = 0.003 826.5 − 218.81218.81 = 0.00833 > 0.005           𝑂𝐾 

Check for bar placement: 𝑆 = 400 − 40 × 2 − 10 × 2 − 4 × 283 = 62.67 𝑚𝑚 > 𝑑 = 28 𝑚𝑚,   > 25 𝑚𝑚       𝑂𝐾 

ℎ = 𝑑 + 𝑑2 + stirrups + 𝑐𝑜𝑣𝑒𝑟 = 826.5 + 282 + 10 + 40 = 890.5 𝑚𝑚 

Take 𝑏 = 400 𝑚𝑚   and     ℎ = 900 𝑚𝑚. 

 

Example: 
The beam shown below is loaded by service (unfactored) dead load of 45 𝐾𝑁/𝑚 and service 
live load of 25 𝐾𝑁/𝑚. Design the beam for flexure given the following information: 

𝑆 25
𝑑 

𝜀  

𝑑𝑑 
𝑐 

𝜀   28

0.003 
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𝑓 = 24 𝑀𝑃𝑎,        𝑓 = 420 𝑀𝑃𝑎. 
Assume the depth of the beam ℎ = 32 𝑐𝑚 

Use bars   16   

 

 

 

 

 

 
Solution: 𝑤 = 1.2 ∙ 45 = 54 𝐾𝑁/𝑚 𝑤 = 1.6 ∙ 25 = 40 𝐾𝑁/𝑚 

Determination the maximum positive and negative 
bending moments for the beam: 

 Maximum positive bending moment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ↷ + ∑ 𝑀 = 0,          𝐴 ∙ 4 − 94 ∙ 4 ∙ 2 + 54 ∙ 2 ∙ 1 = 0                      𝐴 = 161 𝐾𝑁  

Location of Maximum positive moment at distance 𝑥 from support A from condition of zero 

shear force.           

4 𝑚 2 𝑚 

32 𝑐𝑚 

a 

a 

a 

a 

32 𝑐𝑚 

a-a 

𝑏 
𝑤 = 40 𝐾𝑁/𝑚 𝑤 = 54 𝐾𝑁/𝑚 

A 
4 m 2 m 

B 

1.713 m 

𝑀 , = 137.88 𝐾𝑁 ∙ 𝑚 

108 𝐾𝑁 ∙ 𝑚 
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𝑉(𝑥) = 0,        161 − 94 ∙ 𝑥 = 0          𝑥 = 1.713 𝑚 𝑀 , = 161 ∙ 1.713 − 94 ∙ 1.7132 = 137.88 𝐾𝑁 ∙ 𝑚 

𝑀 = −54 ∙ 22 = −108 𝐾𝑁 ∙ 𝑚 

 Maximum negative bending moment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum moments 

from all cases (envelope): 𝑀 , = 137.88 𝐾𝑁 ∙ 𝑚 𝑀 , = 188 𝐾𝑁 ∙ 𝑚        
 

 

 

 

 

𝑤 = 94 𝐾𝑁/𝑚 

 𝐴 = 161 𝐾𝑁 

 𝑥 

 𝑀 ,  

 𝑉 

𝑤 = 40 𝐾𝑁/𝑚 𝑤 = 54 𝐾𝑁/𝑚 

A 4 𝑚 2 𝑚 B 

188 𝐾𝑁 ∙ 𝑚 

𝑀 , = − 𝑤𝑙2 = − 94 ∙ 22 = −188 𝐾𝑁 ∙ 𝑚 
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Determination of the beam width  𝒃 and Design for negative moment 𝑴𝒖 = 𝟏𝟖𝟖 𝑲𝑵 ∙ 𝒎    
Take 𝜙 = 0.9 for flexure as tension-controlled section 

Assume 𝜌 = 0.4𝜌 . 

Take 𝛽 = 0.85  (𝑓 = 24 𝑀𝑃𝑎) 𝜌 = 0.85 𝑓𝑓 𝛽 600600 + 𝑓 = 0.85 24420 0.85 600600 + 420 = 0.02429             𝜌 = 0.4𝜌 = 0.4 ∙ 0.02429 = 0.01 𝑚 = 𝑓0.85𝑓 = 4200.85 ∙ 24 = 20.6 

𝑅 = 𝜌𝑓 1 − 𝜌𝑚2 = 0.01 ∙ 420 1 − 0.01 ∙ 20.62 = 3.767 𝑀𝑃𝑎 

𝑑 = ℎ − 𝑐𝑜𝑣𝑒𝑟 − stirrups − bar2 = 320 − 40 − 10 − 162 = 262 𝑚𝑚 

𝑏𝑑 = 𝑀𝜙𝑅 = 188 ∙ 100.9 ∙ 3.767 = 𝑏 ∙ 262         →     𝑏 = 188 ∙ 100.9 ∙ 3.767 ∙ 262 = 807.8 𝑚𝑚 

Take 𝑏 = 900 𝑚𝑚 𝑅 = 𝑀𝜙𝑏𝑑 = 188 ∙ 100.9 ∙ 900 ∙ 262 = 3.38 𝑀𝑃𝑎 

𝜌 = 1𝑚 1 − 1 − 2𝑚𝑅𝑓 = 120.6 1 − 1 − 2 ∙ 20.6 ∙ 3.38420 = 0.0089 

𝐴 = 𝜌𝑏𝑑 = 0.0089 ∙ 900 ∙ 262 = 2099 𝑚𝑚  𝐴 , = 0.25 𝑓𝑓 𝑏 𝑑 ≥ 1.4𝑓 𝑏 𝑑 

𝐴 , = 0.25 √24420 900 ∙ 262 = 688 𝑚𝑚   
𝐴 , = 1.4420 900 ∙ 262 =  786 𝑚𝑚     − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝐴 = 2099 𝑚𝑚 > 𝐴 , = 786 𝑚𝑚   − 𝑂𝐾 

Take 11  16  in one layer with 𝐴 = 22.11 𝑐𝑚 >  𝐴 , = 20.99 𝑐𝑚     − 𝑂𝐾 

Check for strain: 𝑎 = 𝐴 𝑓0.85 𝑓 𝑏 = 2211 ∙ 4200.85 ∙ 24 ∙ 900 = 50.6 𝑚𝑚 

𝑐 = 𝑎𝛽 = 50.60.85 = 59.5 𝑚𝑚   
𝜀 = 0.003 𝑑 − 𝑐𝑐 = 0.003 262 − 59.559.5 = 0.01 > 0.005           𝑂𝐾 
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Check for bar placement: 𝑆 = 900 − 40 × 2 − 10 × 2 − 11 × 1610 = 62.4 𝑚𝑚 > 25 𝑚𝑚       𝑂𝐾 

Design for positive moment  𝑴𝒖 = 𝟏𝟑𝟕. 𝟖𝟖 𝑲𝑵 ∙ 𝒎 𝑅 = 𝑀𝜙𝑏𝑑 = 137.88 ∙ 100.9 ∙ 900 ∙ 262 = 2.48 𝑀𝑃𝑎 

𝜌 = 1𝑚 1 − 1 − 2𝑚𝑅𝑓 = 120.6 1 − 1 − 2 ∙ 20.6 ∙ 2.48420 = 0.0063 

𝐴 = 𝜌𝑏𝑑 = 0.0063 ∙ 900 ∙ 262 = 1486 𝑚𝑚  𝐴 , =  786 𝑚𝑚    𝐴 = 1486 𝑚𝑚 > 𝐴 , = 786 𝑚𝑚   − 𝑂𝐾 

Take 8  16  in one layer with 𝐴 = 16.08 𝑐𝑚 >  𝐴 , = 14.86 𝑐𝑚     − 𝑂𝐾 

Check for strain: 𝑎 = 𝐴 𝑓0.85 𝑓 𝑏 = 1608 ∙ 4200.85 ∙ 24 ∙ 900 = 36.78 𝑚𝑚 

𝑐 = 𝑎𝛽 = 370.85 = 43.28 𝑚𝑚   
𝜀 = 0.003 𝑑 − 𝑐𝑐 = 0.003 262 − 43.2843.28 = 0.0152 > 0.005           𝑂𝐾 

Check for bar placement:    𝑆 > 25 𝑚𝑚       𝑂𝐾 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 𝑚 2 𝑚 
32

 c
m

1 

1 

2 

2 

1-1 

90 𝑐𝑚 

32 𝑐𝑚 

2-2 

90 𝑐𝑚 

32 𝑐𝑚 8 16 11 16 

T.B.  11 16 
B.B.  8 16 
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4.10 DOUBLY REINFORCED CONCRETE SECTIONS (SECTIONS WITH COMPRESSION 
REINFORCEMENT). 

 
Flexural members are designed for tension reinforcement. Any additional moment capacity 
required in the section is usually provided by increasing the section size or the amount of 
tension reinforcement. 
However, the cross-sectional dimensions in some applications may be limited by 
architectural or functional requirements (architectural limitations restrict the beam web 
depth at midspan, or the midspan section dimensions are not adequate to carry the support 
negative moment even when tensile steel at the support is sufficiently increased), and the 
extra moment capacity may have to be provided by additional tension and compression 
reinforcement. The extra steel generates an internal force couple, adding to the sectional 
moment capacity without changing the ductility of the section. In such cases, the total 
moment capacity consists of two components: 

1. moment due to the tension reinforcement that balances the compression 
concrete, 𝑀 , and 

2. moment generated by the internal steel force couple consisting of 
compression reinforcement and equal amount of additional tension 
reinforcement, 𝑀  as illustrated in figure below. 

 

 

 

 

 

 

 

 
 

Notation: 𝜀 − strain in compression steel. 𝑓 = 𝐸 𝜀 ≤ 𝑓 − compression steel stress 𝐴 − area fo compression steel 𝑑 − distance from extreme compression fiber to centroid of compression steel 𝜌 = 𝐴𝑏𝑑 −  compression steel reinforcement ratio. 𝐴 − part of the tension steel that match 𝐶 . 𝐶 − concrete compression resultant for a beam without compression reinforcement. 𝐶 − compression steel resultant as if 𝐴  were stressed at (𝑓 − 0.85𝑓 ). 
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4.10.1 Analysis of doubly reinforced concrete sections 

 

 

 

 

 

 

 

 Compression steel is yielded 

Compression steel is yielded when     𝜀 ≥ 𝜀 = 𝑓𝐸  

𝜀 = 0.003 𝑐 − 𝑑′𝑐 ,                   𝑐 = 𝑎𝛽      𝐴 = 𝐴 − 𝐴 ,                         𝐴 = 𝐴  𝑇 = 𝐴 𝑓 = 𝐶               𝑎𝑛𝑑       𝑀 = 𝐴 𝑓 𝑑 − 𝑎2    𝑜𝑟  𝑀 = (𝐴 − 𝐴 )𝑓 𝑑 − 𝑎2  

where                       𝑎 = 𝐴 𝑓0.85 𝑓 𝑏 = (𝐴 − 𝐴 )𝑓0.85 𝑓 𝑏                         𝜌 = 𝐴𝑏𝑑                        𝜌 = 𝐴𝑏𝑑 

substituting "𝑎" into      c = 𝑎𝛽 =
(𝐴 − 𝐴 )𝑓𝛽 ∙ 0.85 𝑓 𝑏 =

(𝜌 − 𝜌′)𝑓 𝑑𝛽 ∙ 0.85 𝑓  

substituting "𝑐" into     𝜀 = 0.003 1 − 𝑑′𝑐 =0.003 1 − 0.85𝛽 𝑓 𝑑′(𝜌 − 𝜌′)𝑑𝑓  

Compression steel is yielded when       𝜀 ≥ 𝜀 = 𝑓𝐸  

0.003 1 − 0.85𝛽 𝑓 𝑑′(𝜌 − 𝜌′)𝑑𝑓 ≥ 𝑓𝐸 = 200000 𝑀𝑃𝑎 

or in the form 𝜌 − 𝜌′ ≥ 0.85𝑓 𝑑′𝑑𝑓 𝛽 600600 − 𝑓  𝜌 ≥ �̅�  

where                                        �̅� = 0.85𝑓 𝑑′𝑑𝑓 𝛽 600600 − 𝑓 + 𝜌                                                (∗) �̅� − minimum tensile reinforcement ratio that will ensure yielding of compression steel at 

failure. 
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In the previous equation of �̅�  was ignored that part of the compression zone is occupied by 

the compression reinforcement, the value of ignored compressive force is  𝐴 (0.85𝑓 ′). So 

the depth of stress block can be expressed  𝑎 = 𝐴 𝑓 − 𝐴 𝑓 − 0.85𝑓 ′0.85𝑓 ′𝑏 , 
and  �̅� = 0.85𝑓 𝑑′𝑑𝑓 𝛽 600600 − 𝑓 + 𝜌 (1 − 0.85𝑓𝑓 ) 

In all calculations, the equation (∗) for �̅�  will be used.   𝑇 = 𝐴 𝑓 = 𝐶 + 𝐶 = 𝑇 + 𝑇  𝐶 = 0.85𝑓 𝑎𝑏,                𝐶 = 𝐴 𝑓 − 0.85𝑓  𝐴 𝑓 = 0.85𝑓 𝑎𝑏 + 𝐴 𝑓 − 0.85𝑓           𝑓𝑟𝑜𝑚  𝑤ℎ𝑒𝑟𝑒      𝑎 = 𝐴 𝑓 − 𝐴 𝑓 − 0.85𝑓 ′0.85𝑓 ′𝑏  

The nominal moment strength for rectangular section with tension and compression steel is 

yielded 𝑀 = 𝐴 𝑓 − 𝐴 𝑓 − 0.85𝑓 ′ 𝑑 − 𝑎2 + 𝐴 𝑓 − 0.85𝑓 ′ (𝑑 − 𝑑 ), 
𝑜𝑟                             𝑀 = 0.85𝑓 𝑎𝑏 𝑑 − 𝑎2 + 𝐴 𝑓 − 0.85𝑓 ′ (𝑑 − 𝑑 ). 
 
 For simplicity,  𝐴 (0.85𝑓 ′)  can be ignored and then: 

𝑇 = 𝐴 𝑓 = 𝐶 +  𝐶 = 𝑇 + 𝑇 ,            𝐶 = 0.85𝑓 𝑎𝑏,         𝐶 = 𝐴 𝑓       𝑎 = (𝐴 − 𝐴 )𝑓0.85𝑓 ′𝑏  

𝑀 = (𝐴 − 𝐴 )𝑓 𝑑 − 𝑎2 + 𝐴 𝑓 (𝑑 − 𝑑 ) = 0.85𝑓 𝑎𝑏 𝑑 − 𝑎2 + 𝐴 𝑓 (𝑑 − 𝑑 ) 

 

 Compression steel is NOT yielded 

Compression steel is NOT yielded when  𝜀 < 𝜀 = 𝑓𝐸                or               𝑓 = 𝜀 𝐸 < 𝑓                or                   𝜌 < �̅�  

𝑓 = 𝜀 𝐸 = 0.003 𝑐 − 𝑑′𝑐 200 000 = 600 𝑐 − 𝑑′𝑐  

 𝑇 = 𝐴 𝑓 = 𝐶 + 𝐶 = 𝑇 + 𝑇  𝐶 = 0.85𝑓 𝑎𝑏,                𝐶 = 𝐴 (𝑓 − 0.85𝑓 ) 
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𝐴 𝑓 = 0.85𝑓 𝑎𝑏 + 𝐴 (𝑓 − 0.85𝑓 )    𝑓𝑟𝑜𝑚  𝑤ℎ𝑒𝑟𝑒    𝑎 = 𝐴 𝑓 − 𝐴 (𝑓 − 0.85𝑓 ′)0.85𝑓 ′𝑏 = 𝛽 𝑐. 
Note that in the above equation two unknowns “𝑐” and  “𝑓 ”. Substitiuting  𝑓 = 600  

in “𝑎” we get an quadratic equation in “𝑐”, the only unknown, which is easily solved for “𝑐”. 

The nominal moment strength for rectangular section with tension and compression steel is 

NOT yielded 𝑀 = 𝐴 𝑓 − 𝐴 (𝑓 − 0.85𝑓 ′) 𝑑 − 𝑎2 + 𝐴 (𝑓 − 0.85𝑓 ′)(𝑑 − 𝑑 ), 
𝑜𝑟                             𝑀 = 0.85𝑓 𝑎𝑏 𝑑 − 𝑎2 + 𝐴 (𝑓 − 0.85𝑓 ′)(𝑑 − 𝑑 ). 
For simplicity,  𝐴 (0.85𝑓 ′)  can be ignored and then: 

𝑇 = 𝐴 𝑓 = 𝐶 +  𝐶 = 𝑇 + 𝑇 ,         𝐶 = 0.85𝑓 𝑎𝑏,           𝐶 = 𝐴 𝑓 ′          𝑎 = 𝐴 𝑓 − 𝐴 𝑓 ′0.85𝑓 ′𝑏  

𝑀 = 𝐴 𝑓 − 𝐴 𝑓 ′ 𝑑 − 𝑎2 + 𝐴 𝑓 ′(𝑑 − 𝑑 ) = 0.85𝑓 𝑎𝑏 𝑑 − 𝑎2 + 𝐴 𝑓 ′(𝑑 − 𝑑 ) 

 

For both cases (compression steel is yielded and is NOT yielded)  𝜀 ≥ 0.005 (tension-
controlled section). 
 
 

Example: 
Determine the nominal positive moment strength of the 
section of rectangular cross sectional beam. The beam is 
reinforced with 4  32 in the tension zone and  2  20  in the 
compression zone. 
Take  𝑓 = 20 𝑀𝑃𝑎,    𝑓 = 400 𝑀𝑃𝑎. 
 
Solution: 𝐴 (4  32) = 32.17 𝑐𝑚  𝐴 (2  20) = 6.28 𝑐𝑚  𝜌 = 𝐴𝑏𝑑 = 3217350 ∙ 684 = 0.0134 

𝜌 = 𝐴𝑏𝑑 = 628350 ∙ 684 = 0.0026,                                     𝛽 = 0.85, 
�̅� = 0.85𝑓 𝑑′𝑑𝑓 𝛽 600600 − 𝑓 + 𝜌 = 0.85 ∙ 20 ∙ 63684 ∙ 400 0.85 600600 − 400 + 0.0026 = 0.01258 𝜌 = 0.0134 > �̅� = 0.01258          compression steel is yielded (𝜀 ≥ 𝜀 ) 𝑇 = 𝐴 𝑓 = 𝐶 + 𝐶  

𝑑 = 6
84 𝑚𝑚

 
𝑏 =  350 𝑚𝑚 

d’
 =

 6
3 

m
m

 2  20 

4  32 
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𝐴 𝑓 = 0.85𝑓 𝑎𝑏 + 𝐴 𝑓 − 0.85𝑓   from where  𝑎 = 𝐴 𝑓 − 𝐴 𝑓 − 0.85𝑓 ′0.85𝑓 ′𝑏 = 3217 ∙ 400 − 628 ∙ (400 − 0.85 ∙ 20)0.85 ∙ 20 ∙ 350 = 175.84 𝑚𝑚, 
𝑐 = 𝑎𝛽 = 175.840.85 = 206.88 𝑚𝑚, 
𝑀 = 0.85𝑓 𝑎𝑏 𝑑 − 𝑎2 + 𝐴 𝑓 − 0.85𝑓 ′ (𝑑 − 𝑑 ) = 

= 0.85 ∙ 20 ∙ 175.84 ∙ 350 684 − 175.842 + 628(400 − 0.85 ∙ 20)(684 − 63) × 10 == 773.01 𝐾𝑁 ∙ 𝑚 

Check for  𝜀 ≥ 0.005: 𝜀 = 0.003 𝑑 − 𝑐𝑐 = 0.003 684 − 206.88206.88 = 0.00691 > 0.005           𝑂𝐾 

Take 𝜙 = 0.9 for flexure as tension-controlled section. 𝜙𝑀 = 0.9 ∙ 773.01 = 695.71 𝐾𝑁 ∙ 𝑚 

 

Example: 
Repeat the previous example using  𝑓 = 30 𝑀𝑃𝑎. 
Solution: �̅� = 0.85𝑓 𝑑′𝑑𝑓 𝛽 600600 − 𝑓 + 𝜌 = 0.85 ∙ 30 ∙ 63684 ∙ 400 0.836 600600 − 400 + 0.0026 = 0.0173 𝜌 = 0.0134 < �̅� = 0.0173          compression steel is NOT yielded (𝜀 < 𝜀 ) 𝑇 = 𝐴 𝑓 = 𝐶 + 𝐶  𝑓 = 600 𝑐 − 𝑑′𝑐 ,           𝛽 = 0.85 − 0.007(𝑓 − 28) = 0.85 − 0.007(30 − 28) = 0.836   𝐴 𝑓 = 0.85𝑓 𝑎𝑏 + 𝐴 (𝑓 − 0.85𝑓 ) from where  𝑎 = 𝐴 𝑓 − 𝐴 (𝑓 − 0.85𝑓 ′)0.85𝑓 ′𝑏 = 𝛽 𝑐 

3217 ∙ 400 − 628 ∙ 600 𝑐 − 63𝑐 − 0.85 ∙ 300.85 ∙ 30 ∙ 350 = 0.836 𝑐 

103.755 + 2659.764𝑐 = 0.836 𝑐,         ⟹   0.836 𝑐 − 103.755 𝑐 − 2659.764 = 0, 
solution of quadratic equation              𝑥 , =  −𝑏 ± √𝑏 − 4𝑎𝑐2𝑎                                           𝑐 − 124.109 𝑐 − 3181.536 = 0, 
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𝑐 , =  124.109 ± 124.109 − 4 ∙ 1 ∙ (−3181.536)2 = 124.109 ± 167.7182  

Choose only  𝑐 > 0,                             𝑐 = 145.91  𝑚𝑚 𝑎 = 𝛽 𝑐 = 0.836 ∙ 145.91 = 121.98 𝑚𝑚, 𝑓 = 600 𝑐 − 𝑑′𝑐 = 600 145.91 − 63145.91 = 340.94 𝑀𝑃𝑎    < 𝑓 = 400 𝑀𝑃𝑎,                   
𝑀 = 0.85𝑓 𝑎𝑏 𝑑 − 𝑎2 + 𝐴 (𝑓 − 0.85𝑓 ′)(𝑑 − 𝑑 ) = 

= 0.85 ∙ 30 ∙ 121.98 ∙ 350 684 − 121.982 + 628(340.94 − 0.85 ∙ 30)(684 − 63) × 10 == 801.27 𝐾𝑁 ∙ 𝑚 

Check for  𝜀 ≥ 0.005: 𝜀 = 0.003 𝑑 − 𝑐𝑐 = 0.003 684 − 145.91145.91 = 0.011 > 0.005           𝑂𝐾 

Take 𝜙 = 0.9 for flexure as tension-controlled section. 𝜙𝑀 = 0.9 ∙ 801.27 = 721.14 𝐾𝑁 ∙ 𝑚 

 

 

4.10.2 Design of doubly reinforced concrete sections. 

 
When the factored moment 𝑀  is greater than the design strength 𝜙𝑀  of the beam when 
it is reinforced with the maximum permissible amount of tension reinforcement, 
compression reinforcement becomes necessary. 
The logical procedure for designning a doubly reinforced sections is to determine first 
whether compression steel is needed for strength. This may be done by comparing the 
required moment strength with the moment strength of a singly reinforced section with the 
maximum permissible amount of tension steel  𝜌 . 
For example, for steel Grade 420  𝜌 = 0.724𝜌  which 

defined from strain conditon 𝜀 = 0.004 for beams. 𝑐0.003 = 𝑑0.003 + 0.004   ⟹         𝑐 = 37 𝑑 ,           𝑎 = 𝛽 𝑐  
The maximum moment strength as a singly reinforced section 𝑀 , = 0.85𝑓 𝑎𝑏 𝑑 − 𝑎2 , 
If 𝑀 > 𝜙𝑀 ,  Design the section as doubly reinforced 
section, 

where      𝜙 = 0.65 + (0.004 − 0.002) 2503 = 0.817 ≈ 0.82 

0.003 

𝑑 

𝑐 

𝜀 = 0.004 

𝑑𝑑 
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Example: 
The beam is loaded by a uniform service 𝐷𝐿 = 25 𝐾𝑁/𝑚 and a uniform service                 𝐿𝐿 = 35 𝐾𝑁/𝑚. Compute the area of steel reinforcement for the section.  
Take  𝑓 = 20 𝑀𝑃𝑎,    𝑓 = 400 𝑀𝑃𝑎. 
Assume 𝑑 = 60 𝑚𝑚, and one layer arrangement of tension steel. 
 
 

 

 

 

Solution:  𝑤 = 1.2𝐷 + 1.6𝐿 = 1.2 ∙ 25 + 1.6 ∙ 35 = 86  𝐾𝑁/𝑚 

𝑀 = 𝑀 = 𝑤 𝑙8 = 86 ∙ 4.58 = 217.7 𝐾𝑁 ∙ 𝑚 

Maximum nominal moment strength from strain condition 𝜀 = 0.004 𝑐 = 37 𝑑 = 37 410 = 175.7 𝑚𝑚,                         𝛽 = 0.85 𝑎 = 𝛽 𝑐 = 0.85 ∙  175.7 = 149.4 𝑚𝑚  𝑀 , = 0.85𝑓 𝑎𝑏 𝑑 − 𝑎2 = 0.85 ∙ 20 ∙ 149.4 ∙ 250 410 − 149.42 × 10 = 212.9 𝐾𝑁 ∙ 𝑚 𝜙 = 0.82 𝑀 = 217.7 𝐾𝑁 ∙ 𝑚 > 𝜙𝑀 = 0.82 ∙ 212.9 = 174.6  𝐾𝑁 ∙ 𝑚 

Design the section as doubly reinforced concrete section. 𝑀 = 𝑀𝜙 − 𝑀 = 217.70.82 −  212.9 = 52.59 𝐾𝑁 ∙ 𝑚 

𝑀 = 𝐶 (𝑑 − 𝑑 ) = 𝐴 (𝑓 ′ − 0.85𝑓 ′)(𝑑 − 𝑑 )     ⟹        𝐴 = 𝑀(𝑓 ′ − 0.85𝑓 ′)(𝑑 − 𝑑 ) 

𝑓 = 600 𝑐 − 𝑑𝑐 = 600 175.7 − 60175.7 = 395.1 𝑀𝑃𝑎 < 𝑓 = 400 𝑀𝑃𝑎,  
Compression steel does NOT yield 𝐴 = 𝑀(𝑓 ′ − 0.85𝑓 ′)(𝑑 − 𝑑 ) = 52.59 ∙ 10(395.1 − 0.85 ∙ 20)(410 − 60) = 397.4 𝑚𝑚  𝑇 = 𝐶 + 𝐶 = 0.85𝑓 𝑎𝑏 + 𝐴 (𝑓 − 0.85𝑓 ′) == [0.85 ∙ 20 ∙ 149.4 ∙ 250 + 397.4(395.1 − 0.85 ∙ 20)] × 10 = 785.21 𝐾𝑁 𝐴 = 𝑇𝑓 = 785.21 ∙ 10400 = 1963.02 𝑚𝑚  

𝑑 = 4
10 𝑚𝑚

 

𝑏 =  250 𝑚𝑚 

𝑑’=60
 𝑚𝑚 

4.5  m 
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Example: 
The beam section shown below is loaded by a factored bending 
moment 𝑀 = 520 𝐾𝑁 ∙ 𝑚. Design the beam for flexure given the 
following information: 
 𝑓 = 24 𝑀𝑃𝑎,        𝑓 = 400 𝑀𝑃𝑎. 
Use bars   25 𝑚𝑚, and assume one layer arrangement of tension 
steel. 
Solution: 

Check whether the section will be designed as singly or doubly: 

Maximum nominal moment strength from strain condition 𝜀 = 0.004 𝑐 = 37 𝑑 = 37 500 = 214.29 𝑚𝑚,                         𝛽 = 0.85 𝑎 = 𝛽 𝑐 = 0.85 ∙  214.29 = 182.14 𝑚𝑚  𝑀 , = 0.85𝑓 𝑎𝑏 𝑑 − 𝑎2 = 0.85 ∙ 24 ∙ 182.14 ∙ 350 500 − 182.142 × 10 = 531.81 𝐾𝑁 ∙ 𝑚 𝜙 = 0.82 𝑀 = 520 𝐾𝑁 ∙ 𝑚 > 𝜙𝑀 = 0.82 ∙ 531.81 = 436.1  𝐾𝑁 ∙ 𝑚 

Design the section as doubly reinforced concrete section. 𝑀 = 𝑀𝜙 − 𝑀 = 5200.82 −  531.81 = 102.34 𝐾𝑁 ∙ 𝑚 

𝑀 = 𝐶 (𝑑 − 𝑑 ) = 𝐴 (𝑓 ′ − 0.85𝑓 ′)(𝑑 − 𝑑 )     ⟹               𝐴 = 𝑀(𝑓 ′ − 0.85𝑓 ′)(𝑑 − 𝑑 ) 

𝑑 = 𝑐𝑜𝑣𝑒𝑟 + 𝑠𝑡𝑖𝑟𝑟𝑢𝑝𝑠 + 𝑏𝑎𝑟2 = 40 + 10 + 252 = 62.5 𝑚𝑚 

𝑓 = 600 𝑐 − 𝑑𝑐 = 600 214.29 − 62.5214.29 = 425 𝑀𝑃𝑎 > 𝑓 = 400 𝑀𝑃𝑎,  
Compression steel is yielded.    Take      𝑓 = 𝑓 = 400 𝑀𝑃𝑎 𝐴 = 𝑀𝑓 − 0.85𝑓 ′ (𝑑 − 𝑑 ) = 102.34 ∙ 10(400 − 0.85 ∙ 24)(500 − 62.5) = 616.23 𝑚𝑚  𝑇 = 𝐶 + 𝐶 = 0.85𝑓 𝑎𝑏 + 𝐴 𝑓 − 0.85𝑓 ′ == [0.85 ∙ 24 ∙ 182.14 ∙ 350 + 616.23(400 − 0.85 ∙ 24)] × 10 = 1534.4 𝐾𝑁 𝐴 = 𝑇𝑓 = 1534.4 ∙ 10400 = 3836 𝑚𝑚  

Take 8  25  in two layers with 𝐴 = 39.27 𝑐𝑚 >  𝐴 , = 38.36 𝑐𝑚     − 𝑂𝐾 

Take 2  25  in one layer with 𝐴 = 9.817 𝑐𝑚 >  𝐴 , = 6.16 𝑐𝑚     − 𝑂𝐾 

Now it’s an analysis problem of doubly reinforced concrete section. 

𝑑 = 5
00 𝑚𝑚

 

𝑏 =  350 𝑚𝑚 
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Check whether compression steel has yielded: 𝜌 = 𝐴𝑏𝑑 = 3927350 ∙ 500 = 0.02244 

𝜌 = 𝐴𝑏𝑑 = 981.7350 ∙ 500 = 0.00561,                  𝛽 = 0.85, 
�̅� = 0.85𝑓 𝑑𝑑𝑓 𝛽 600600 − 𝑓 + 𝜌 = 

= 0.85 ∙ 24 ∙ 62.5500 ∙ 400 0.85 600600 − 400 + 0.00561 = 0.02187 𝜌 = 0.02244 > �̅� = 0.02187     

compression steel is yielded (𝜀 ≥ 𝜀 ) 

Check for  𝜀 ≥ 0.005: 𝑇 = 𝐴 𝑓 = 𝐶 + 𝐶     ⟹      𝐴 𝑓 = 0.85𝑓 𝑎𝑏 + 𝐴 𝑓 − 0.85𝑓   from where  𝑎 = 𝐴 𝑓 − 𝐴 𝑓 − 0.85𝑓 ′0.85𝑓 ′𝑏 = 3927 ∙ 400 − 981.7 ∙ (400 − 0.85 ∙ 24)0.85 ∙ 24 ∙ 350 = 167.81 𝑚𝑚, 
𝑐 = 𝑎𝛽 = 167.810.85 = 197.42 𝑚𝑚,                     𝑑 = 𝑑 + 𝑆2 + 𝑑2 = 500 + 252 + 252 = 525 𝑚𝑚 

𝜀 = 0.003 𝑑 − 𝑐𝑐 = 0.003 525 − 197.42197.42 = 0.00498 < 0.005 

When 0.004 < 𝜀 < 0.005 (in transition zone between compression-controlled section and 

tension-controlled section), it is obvious here that the nominal moment strength of the 

section will satisfy the strength condition  𝜙𝑀 ≥ 𝑀 ,   𝑤ℎ𝑒𝑟𝑒    0.82 < 𝜙 < 0.9 .    
This step is a proof of the above statement. 𝜙 = 0.65 + (0.00498 − 0.002) 2503 = 0.8983 > 0.82 − 𝑎𝑠 𝑤𝑎𝑠 𝑢𝑠𝑒𝑑   𝑀 = 0.85𝑓 𝑎𝑏 𝑑 − 𝑎2 + 𝐴 (𝑓 − 0.85𝑓 ′)(𝑑 − 𝑑 ) = 

= 0.85 ∙ 24 ∙ 167.81 ∙ 350 500 − 167.812 + 981.7(400 − 0.85 ∙ 24)(500 − 62.5) × 10 = = 661.59 𝐾𝑁 ∙ 𝑚                 𝜙𝑀 = 0.8983 ∙ 661.59 = 594.31 𝐾𝑁 ∙ 𝑚 >  𝑀 = 520   𝐾𝑁 ∙ 𝑚 
 
 

4.1 REINFORCED CONCRETE FLANGED SECTIONS (T- AND L- SECTIONS). 
 
It is normal to cast concrete slabs and beams together, producing a monolithic structure. 
Slabs have smaller thicknesses than beams. Under bending stresses, those parts of the slab 
on either side of the beam will be subjected to compressive stresses, depending on the 

2  25 

8  25 𝑑 = 5
00 𝑚𝑚

 

𝑏 =  350 𝑚𝑚 

𝑑’ = 6
2.5 𝑚𝑚
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position of these parts relative to the top fibers and relative to their distances from the 
beam. The part of the slab acting with the beam is called the flange. The rest of the  section 
is called the stem, or web.  
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4.11.1 Effective width. 
 

The ACI Code definitions for the effective compression flange width for T- and inverted          
L-shapes in continuous floor systems are illustrated in figure below.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  45 
 

For T-shapes, the total effective compression flange width, 𝑏 , is limited to one-quarter of 
the span length of the beam (𝐿), and the effective overhanging portions of the compression 
flange on each side of the web are limited to 

(a) eight times the thickness of the flange (slab), and 
(b) one-half the clear distance to the next beam web. 

 
The ACI Code, 8.12.2, prescribes a limit on the effective flange width, 𝑏  , of interior                
T-section to the smallest of the following:                             (𝑎)   𝑏 ≤ 𝐿4                             (𝑏)   𝑏 ≤ 𝑏 + 16ℎ                              (𝑐)   𝑏 ≤ 𝑏 + 12  the clear distance to the next beam web from both sides 

For symmetrical T-section (the clear distance to the next beam web from both sides is the 
same ) the previous (𝑐) will be                             (𝑐)   𝑏 ≤ Center to Center spacing between adjacent beams 
 
For inverted L-shapes, the following three limits are given for the effective width of the 
overhanging portion of the compression flange: 

(a) one-twelfth of the span length of the beam, 
(b) six times the thickness of the flange (slab), and 
(c) one-half the clear transverse distance to the next beam web. 

 
The ACI Code, 8.12.3, prescribes a limit on the effective flange width, 𝑏  , of exterior              
T-section (L-shape) to the smallest of the following:                             (𝑎)   𝑏 ≤ 𝑏 + 𝐿12                             (𝑏)   𝑏 ≤ 𝑏 + 6ℎ                              (𝑐)   𝑏 ≤ 𝑏 + 12  the clear distance to the next beam web. 

 
 
Isolated beams, in which the T-shape is used to provide a flange for additional compression 
area, shall have a flange thickness (ACI 8.12.4) 
                             (𝑎)   𝑏 ≤ 4𝑏                               (𝑏)   𝑡 ≥ 12 𝑏  

 
 

4.11.2 Analysis of T-sections. 

The neutral axis of a T-section beam may be either in the flange or in the web, depending 
upon the proportions of the cross section, the amount of tensile steel, and the strength of 
the materials. 
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Procedure of analysis: 

1. Assume that T-section is a rectangular section with total 𝑏  width. 𝑇 = 𝐶            ⟹                    𝐴 𝑓 = 0.85 𝑓 𝑎𝑏                     ⟹                𝑎 = 𝐴 𝑓0.85 𝑓 𝑏  

2. Compare 𝑎  with ℎ −  the thickness of flange. 
Here may be TWO CASES: 
 

 Case I:             𝑎 ≤ ℎ    analyze as rectangular section. 
 
 
 
 
 
 
 
 
 
 

 𝑀 = 𝐴 𝑓 𝑑 − 𝑎2                       𝑜𝑟                𝑀 = 0.85 𝑓 𝑎𝑏 𝑑 − 𝑎2  
   𝐴 = 0.85 𝑓 𝑎𝑏𝑓  

 
Case II:             𝑎 > ℎ    analyze as T-section. 
 
 
 
 
 
 
 
 

1. 𝑀 = 𝑀 + 𝑀  
where    𝑀 − Moment capacity of the T-section, 
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                𝑀 − Moment capacity of the flange, 
                𝑀 − Moment capacity of the web. 
 

2.  𝑀 = 𝐴 𝑓 𝑑 − ℎ2 = 0.85 𝑓 (𝑏 − 𝑏 )ℎ 𝑑 − ℎ2  

𝑇 = 𝐶        ⟹      𝐴 𝑓 = 0.85 𝑓 (𝑏 − 𝑏 )ℎ            ⟹        𝐴 = 0.85 𝑓 (𝑏 − 𝑏 )ℎ𝑓   3.  𝑀 = 𝐴 𝑓 𝑑 − 𝑎2 = 0.85 𝑓 𝑏 𝑎 𝑑 − 𝑎2 ,                      𝐴 = 𝐴 −  𝐴     𝑇 = 𝐶        ⟹      𝐴 𝑓 = 0.85 𝑓 𝑏 𝑎           ⟹         𝑎 = 𝐴 𝑓0.85 𝑓 𝑏   𝑀 = 𝐴 𝑓 𝑑 − ℎ2 + 𝐴 𝑓 𝑑 − 𝑎2  

𝑜𝑟                                            𝑀 = 0.85 𝑓 (𝑏 − 𝑏 )ℎ 𝑑 − ℎ2 + 0.85 𝑓 𝑏 𝑎 𝑑 − 𝑎2  

4. Check for strain   𝜀 ≥ 0.005. 
 
 

4.11.3 Minimum reinforcement of flexural T-section members.  𝐴 ,   for T-sections is as in 4.6 (page 23). 
For statically determinate members with a flange in tension, ACI Code, 10.5.2., as in the case 
of cantilever beams,  𝐴 ,  shall not be less than the value given by equations in section 4.6       
(see page 23), except that  𝑏  is replaced by either  2𝑏  or the width of the flange, 
whichever is smaller. 𝐴 , = 0.5 𝑓 ′𝑓  𝑏 𝑑,                     𝐴 , = 0.25 𝑓 ′𝑓  𝑏𝑑. 
According to ACI code, 10.6.6, where flanges of T-beam construction are in tension, part of 
the flexural tension reinforcement shall be distributed over an effective flange width as 
defined in 8.12, or a width equal to one-tenth the span, whichever is smaller. If the effective 
flange width exceeds one-tenth the span, some longitudinal reinforcement shall be provided 
in the outer portions of the flange. 
 

4.11.4 Analysis of the positive-moment capacity of a T-section. 
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Example: 
Calculate the design strength 𝜙𝑀  for one of the T beams in the positive moment region. 
The beam has a clear span of 7 m (face to face). 𝑓 = 28 𝑀𝑃𝑎,        𝑓 = 420 𝑀𝑃𝑎. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution: 
From the Geometry of T-section: 𝑏 = 300 𝑚𝑚,                               ℎ = 600 𝑚𝑚,                            𝑡 = ℎ = 75 𝑚𝑚 𝐴 (4  25) = 1963.5 𝑚𝑚  𝑏  is the smallest of:                             (𝑎)   𝑏 ≤ 𝐿4 = 70004 = 1750 𝑚𝑚,                             (𝑏)   𝑏 ≤ 𝑏 + 16ℎ = 300 + 16 ∙ 75 = 1500 𝑚𝑚,            − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙                             (𝑐)   𝑏 ≤ Center to Center spacing between adjacent beams = 1800 𝑚𝑚. 
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Take 𝑏 = 1500 𝑚𝑚. 

 

 

 

 

 

 

 𝑎 = 𝐴 𝑓0.85 𝑓 𝑏 = 1963.5 ∙ 4200.85 ∙ 28 ∙ 1500 = 23.1 𝑚𝑚  < ℎ = 75 𝑚𝑚 

The beam section will be considered as rectangular with 𝑏 = 𝑏 = 1500 𝑚𝑚. 𝑑 = 600 − 40 − 10 − 252 = 537.5 𝑚𝑚 

𝑀 = 𝐴 𝑓 𝑑 − 𝑎2 = 1963.5 ∙ 420 537.5 − 23.12 × 10 = 433.74 𝐾𝑁 ∙ 𝑚 

Check for strain 𝜀 ≥ 0.005 𝑐 = 𝑎𝛽 = 23.10.85 = 27.18 𝑚𝑚,                                            𝛽 = 0.85                                
𝜀 = 0.003 𝑑 − 𝑐𝑐 = 0.003 537.5 − 27.1827.18 = 0.0565 > 0.005        𝑂𝐾 

Take 𝜙 = 0.9 for flexure as tension-controlled section. 𝑀 = 𝜙𝑀 = 0.9 ∙ 433.74 = 390.37 𝐾𝑁 ∙ 𝑚 
 
Example: 
Determine the positive moment capacity of the edge L-section beam. The beam has a clear 
span of 6 m (face to face). 𝑓 = 20 𝑀𝑃𝑎,        𝑓 = 400 𝑀𝑃𝑎. 
 
 
 
 
 
 
 
 
 
Solution: 
From the Geometry of T-section: 

 300 

12
0 

55
0 

 300  2200 

 6  32 
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𝑆 
 32

𝑑 

𝜀  

𝑑𝑑 
𝑐 

𝜀   32

0.003 

𝑏 = 300 𝑚𝑚,                               ℎ = 670 𝑚𝑚,                            𝑡 = ℎ = 120 𝑚𝑚 𝐴 (6  32) = 4825.5 𝑚𝑚  𝑏  is the smallest of:        (𝑎)   𝑏 ≤ 𝑏 + 𝐿12 = 300 + 600012 = 800 𝑚𝑚,       − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙        (𝑏)   𝑏 ≤ 𝑏 + 6ℎ = 300 + 6 ∙ 120 = 1020 𝑚𝑚,        (𝑐)   𝑏 ≤ 𝑏 + 12  the clear distance to the next beam web = 300 + 22002 = 1400 𝑚𝑚. 
Take 𝑏 = 800 𝑚𝑚. 

Check if 𝑎 > ℎ  𝑎 = 𝐴 𝑓0.85 𝑓 𝑏 = 4825.5 ∙ 4000.85 ∙ 20 ∙ 800 = 141.93 𝑚𝑚 > ℎ = 120 𝑚𝑚 

The beam section will be considered as L-section with 𝑏 = 800 𝑚𝑚. 𝐴 = 0.85 𝑓 (𝑏 − 𝑏 )ℎ𝑓 = 

       = 0.85 ∙ 20(800 − 300)120400 = 2550 𝑚𝑚  𝐴 = 𝐴 − 𝐴 = 4825.5 − 2550 = 2275.5 𝑚𝑚  𝑎 = 𝐴 𝑓0.85 𝑓 𝑏  = 2275.5 ∙ 4000.85 ∙ 20 ∙ 300 = 178.47 𝑚𝑚 𝐴  (6  32)  are arranged in two layers 𝑑 = 670 − 40 − 10 − 32 − 252 = 575.5 𝑚𝑚 

𝑀 = 𝐴 𝑓 𝑑 − ℎ2 + 𝐴 𝑓 𝑑 − 𝑎2 = 

= 2550 ∙ 400 575.5 − 1202 + 2275.5 ∙ 400 575.5 − 178.472 × 10 = 968.4 𝐾𝑁 ∙ 𝑚 

 

Check for strain 𝜀 ≥ 0.005 𝑐 = 𝑎𝛽 = 178.470.85 = 209.96 𝑚𝑚,         𝛽 = 0.85   
𝑑 = 𝑑 + 𝑆2 + 𝑑2 = 575.5 + 252 + 322 = 604 𝑚𝑚 

𝜀 = 0.003 𝑑 − 𝑐𝑐 = 0.003 604 − 209.96209.96 =                                        = 0.00563 > 0.005           𝑂𝐾 

800 

 300 

12
0 

55
0 

𝑎 
 6  32 
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𝑆28 

𝑑 

𝜀  

𝑑𝑑 
𝑐 

𝜀  28 

0.003 

Take 𝜙 = 0.9 for flexure as tension-controlled section.  𝑀 = 𝜙𝑀 = 0.9 ∙ 961.65 = 865.49 𝐾𝑁 ∙ 𝑚 

 
Example: 
Compute the positive design moment capacity of the      
T-section beam. 𝑓 = 20 𝑀𝑃𝑎,        𝑓 = 420 𝑀𝑃𝑎. 
 
Solution: 
From the Geometry of T-section: 𝑏 = 200 𝑚𝑚,       ℎ = 650 𝑚𝑚,          𝑡 = ℎ = 80 𝑚𝑚 𝐴 (4  28) = 2463 𝑚𝑚  

Check if 𝑎 > ℎ  𝑎 = 𝐴 𝑓0.85 𝑓 𝑏 = 2463 ∙ 4200.85 ∙ 20 ∙ 600 = 101.42 𝑚𝑚  𝑎 = 101.42 𝑚𝑚 > ℎ = 80 𝑚𝑚 .    The beam section will be considered as T-section. 𝐴 = 0.85 𝑓 (𝑏 − 𝑏 )ℎ𝑓 = 0.85 ∙ 20(600 − 200)80420 = 1295.2 𝑚𝑚  𝐴 = 𝐴 − 𝐴 = 2463 − 1295.2 = 1167.76 𝑚𝑚  𝑎 = 𝐴 𝑓0.85 𝑓 𝑏  = 1167.76 ∙ 4200.85 ∙ 20 ∙ 200 = 144.25 𝑚𝑚 𝐴  (4  28)  are arranged in two layers 𝑑 = 650 − 40 − 10 − 28 − 302 = 557 𝑚𝑚 

𝑀 = 𝐴 𝑓 𝑑 − ℎ2 + 𝐴 𝑓 𝑑 − 𝑎2 = 

= 1295.2 ∙ 420 557 − 802 + 1167.76 ∙ 420 557 − 144.252 × 10 = 519.05 𝐾𝑁 ∙ 𝑚 

Check for strain 𝜀 ≥ 0.005 𝑐 = 𝑎𝛽 = 144.250.85 = 169.7 𝑚𝑚,                   𝛽 = 0.85   
𝑑 = 𝑑 + 𝑆2 + 𝑑2 = 557 + 302 + 282 = 586 𝑚𝑚 

𝜀 = 0.003 𝑑 − 𝑐𝑐 = 0.003 586 − 169.7169.7 =                                        = 0.00736 > 0.005           𝑂𝐾 

Take 𝜙 = 0.9 for flexure as tension-controlled section. 

4  28 30 
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 200 
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𝑀 = 𝜙𝑀 = 0.9 ∙ 519.05 = 467.15 𝐾𝑁 ∙ 𝑚 
 
 
 

4.11.5 Analysis of the negative-moment capacity of a T-section. 

 
Example: 
Compute the negative design moment capacity of the    T-section beam. 𝑓 = 20 𝑀𝑃𝑎,        𝑓 = 400 𝑀𝑃𝑎. 
 
 
 
 
 
 
 
 
Solution: 
Analyze as rectangular section because that the compression zone is within the web depth. 𝐴 (7  18) = 1781.3 𝑚𝑚  𝑎 = 𝐴 𝑓0.85 𝑓 𝑏 = 1781.3 ∙ 4000.85 ∙ 20 ∙ 300 = 139.71 𝑚𝑚 

𝑀 = 𝐴 𝑓 𝑑 − 𝑎2 = 1781.3 ∙ 400 480 − 139.712 × 10 = 292.23 𝐾𝑁 ∙ 𝑚 

Check for strain 𝜀 ≥ 0.005 𝑐 = 𝑎𝛽 = 139.710.85 = 164.36 𝑚𝑚,                   𝛽 = 0.85   
𝜀 = 0.003 𝑑 − 𝑐𝑐 = 0.003 480 − 164.36164.36 = 0.00576 > 0.005           𝑂𝐾 

Take 𝜙 = 0.9 for flexure as tension-controlled section. 𝑀 = 𝜙𝑀 = 0.9 ∙ 292.23 = 263.01 𝐾𝑁 ∙ 𝑚 

 

 
4.11.6 Design of T-section. 

The design of a T-section beam involves the choice of the cross section and the 
reinforcement required. The flange thickness and width are usually established during the 
design of the floor slab. The size of the beam stem is influenced by the same factores that 
affect the size of a rectangular beam. In the case of a continuous T-beam, the concrete 
compressive stresses are most critical in the negative-moment regions, where the 
compression zone is in the beam stem (web). 
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Design Procedure: 
 

1. Check if the depth of the compression block within 
the thickness of the flange. 

Let   𝑎 = ℎ , then compute  𝑀 − the total moment 
capacity of the flange. 𝑀 = 0.85𝑓 𝑏ℎ 𝑑 − ℎ2  

Case I:          𝑎 ≤ ℎ                    𝑜𝑟                    𝑀 ≥ 𝑀𝜙 ,  
Design as rectangular section. 
 
Case II:          𝑎 > ℎ                    𝑜𝑟                    𝑀 < 𝑀𝜙 ,  
Design as T-section. GO to step 2. 
 

2. 𝑀 = 𝑀 + 𝑀 ,                                             𝐴 = 𝐴 + 𝐴 ,  𝑇 = 𝐶                  ⟹                      𝐴 𝑓 =  0.85𝑓 (𝑏 − 𝑏 )ℎ ,      𝑓𝑟𝑜𝑚 𝑤ℎ𝑒𝑟𝑒   𝐴 =  0.85𝑓 (𝑏 − 𝑏 )ℎ𝑓  ,            𝑎𝑛𝑑  
𝑀 = 𝐴 𝑓 𝑑 − ℎ2 = 0.85𝑓 (𝑏 − 𝑏 )ℎ 𝑑 − ℎ2  

3. Design the web as rectangular section with   𝑏 = 𝑏  , where 𝑀 = 𝑀 − 𝑀 = 𝑀𝜙 − 𝑀  

𝐴 =    𝜌 𝑏 𝑑,                       𝜌 = 1𝑚 1 − 1 − 2𝑅 𝑚𝑓 ,                     𝑅 =     𝑀𝑏 𝑑        
 

The index   𝑋𝑋   and   𝑋𝑋   in the previous notation refers to   𝑓 − 𝑓𝑙𝑎𝑛𝑔𝑒,      𝑤 − 𝑤𝑒𝑏. 

 
 
 
Example: 
Compute the area of steel reinforcement for the interior beam shown below. The beam has 
a clear span of 6 m (face to face).  
Ultimate factored moment 𝑀 = 720 𝐾𝑁 ∙ 𝑚 𝑓 = 20 𝑀𝑃𝑎,        𝑓 = 400 𝑀𝑃𝑎. 

𝑏 = 𝑏  

ℎ  
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Solution: 
From the Geometry of T-section: 𝑏 = 300 𝑚𝑚,       𝑑 = 510 𝑚𝑚,          𝑡 = ℎ = 100 𝑚𝑚 𝑏  is the smallest of:                             (𝑎)   𝑏 ≤ 𝐿4 = 60004 = 1500 𝑚𝑚,                             (𝑏)   𝑏 ≤ 𝑏 + 16ℎ = 300 + 16 ∙ 100 = 1900 𝑚𝑚,                               (𝑐)   𝑏 ≤ Center to Center spacing between adjacent beams  𝑏 = 1300 𝑚𝑚. −𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

Take 𝑏 = 𝑏 = 1300 𝑚𝑚. 𝑀 = 0.85𝑓 𝑏ℎ 𝑑 − ℎ2 = 0.85 ∙ 20 ∙ 1300 ∙ 100 510 − 1002 × 10 = 1016.6 𝐾𝑁 ∙ 𝑚 𝑀 = 1016.6 𝐾𝑁 ∙ 𝑚 > 𝑀𝜙 = 7200.9 = 800 𝐾𝑁 ∙ 𝑚     ⟹     𝑎 < ℎ  

The section will be designed as rectangular section with 𝑏 = 1300 𝑚𝑚. 𝑅 =     𝑀𝜙𝑏𝑑 = 7200.9 ∙ 1300 ∙ 510 = 2.366   𝑀𝑃𝑎,              𝑚 =  𝑓0.85𝑓 ′ = 4000.85 ∙ 20 = 23.53 

𝜌 = 1𝑚 1 − 1 − 2𝑅 𝑚𝑓 = 123.53 1 − 1 − 2 ∙ 2.366 ∙ 23.53400 = 0.0064,    
𝐴 = 𝜌𝑏𝑑 = 0.0064 ∙ 1300 ∙ 510 = 4243.2 𝑚𝑚  

Check for 𝐴 ,  

𝐴 , = 0.25 𝑓𝑓 𝑏 𝑑 ≥ 1.4𝑓 𝑏 𝑑 

𝐴 , = 0.25 √20400 300 ∙ 510 = 428 𝑚𝑚   
𝐴 , = 1.4400 300 ∙ 510 =  534 𝑚𝑚     − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝐴 = 4243.2  𝑚𝑚 > 𝐴 , = 534 𝑚𝑚   − 𝑂𝐾 
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𝑆 
28 

𝑑 

𝜀  

𝑑𝑑 
𝑐 

𝜀  32 

0.003 
Use 3  32 + 3  28  in two layers with 

 𝐴 = 24.127 + 18.473 = 42.6 𝑐𝑚 >  𝐴 , = 42.43 𝑐𝑚  − 𝑂𝐾 

Check for strain: 𝑎 = 𝐴 𝑓0.85 𝑓 𝑏 = 4260 ∙ 4000.85 ∙ 20 ∙ 1300 = 77.1 𝑚𝑚 

𝑐 = 𝑎𝛽 ,                        𝛽 = 0.85 

𝑐 = 77.10.85 = 90.71 𝑚𝑚 

𝑑 = 𝑑 + 𝑆2 + 𝑑2 = 510 + 252 + 322 = 538.5 𝑚𝑚 

𝜀 = 0.003 𝑑 − 𝑐𝑐 = 0.003 538.5 − 90.7190.71 = 0.0148 > 0.005           𝑂𝐾 

Check for bar placement in one layer: 𝑆 = 300 − 40 × 2 − 10 × 2 − 3 × 322 = 52 𝑚𝑚 > 𝑑 = 32 𝑚𝑚,   > 25 𝑚𝑚       𝑂𝐾 

 

 

Example: 
Repeat the previous example using 𝑀 = 930 𝐾𝑁 ∙ 𝑚. 
 

Solution: 𝑀 = 1016.6 𝐾𝑁 ∙ 𝑚 < 𝑀𝜙 = 9300.9 = 1033.3 𝐾𝑁 ∙ 𝑚     ⟹     𝑎 > ℎ  

The section will be designed as T-section section. 𝐴 𝑓 =  0.85𝑓 (𝑏 − 𝑏 )ℎ ,      𝑓𝑟𝑜𝑚 𝑤ℎ𝑒𝑟𝑒                 𝐴 =  0.85𝑓 (𝑏 − 𝑏 )ℎ𝑓 ,  
𝐴 =  0.85𝑓 (𝑏 − 𝑏 )ℎ𝑓 =  0.85 ∙ 20(1300 − 300) ∙ 100400 = 4250 𝑚𝑚  

𝑀 = 𝐴 𝑓 𝑑 − ℎ2 = 4250 ∙ 400 510 − 1002 × 10 = 782 𝐾𝑁 ∙ 𝑚 

𝑀 = 𝑀 − 𝑀 = 𝑀𝜙 − 𝑀 = 9300.9 − 782 = 251.3 𝐾𝑁 ∙ 𝑚  
Here the web will be designed as rectangular section with 𝑏 = 𝑏 = 300 𝑚𝑚 to                     

resist 𝑀 = 251.3 𝐾𝑁 ∙ 𝑚  𝑅 =     𝑀𝑏 𝑑 = 251.3 ∙ 10300 ∙ 510 = 3.22 𝑀𝑃𝑎,                
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𝑆36 

𝑑 

𝜀  

𝑑𝑑 
𝑐 

𝜀  36 

0.003 

𝑚 =  𝑓0.85𝑓 ′ = 4000.85 ∙ 20 = 23.53 

 𝜌 = 1𝑚 1 − 1 − 2𝑅 𝑚𝑓 = 123.53 1 − 1 − 2 ∙ 3.22 ∙ 23.53400 = 0.009, 
𝐴 = 𝜌 𝑏 𝑑 = 0.009 ∙ 300 ∙ 510 = 1377 𝑚𝑚 ,  𝐴 = 𝐴 + 𝐴 = 4250 + 1377 = 5627 𝑚𝑚  𝐴 = 5627  𝑚𝑚 > 𝐴 , = 534 𝑚𝑚   − 𝑂𝐾 

Use 6  36  in two layers with 𝐴 = 61.07 𝑐𝑚 >  𝐴 , = 56.27 𝑐𝑚  – 𝑂𝐾 𝐴 , = 𝐴 , − 𝐴 = 6107 − 4250 = 1857 𝑚𝑚  

Check for strain: 𝑎 = 𝐴 𝑓0.85 𝑓 𝑏 = 1857 ∙ 4000.85 ∙ 20 ∙ 300 = 145.65 𝑚𝑚 

𝑐 = 𝑎𝛽 ,                        𝛽 = 0.85 

𝑐 = 145.650.85 = 171.35 𝑚𝑚 

𝑑 = 𝑑 + 𝑆2 + 𝑑2 = 510 + 252 + 362 = 540.5 𝑚𝑚 

𝜀 = 0.003 𝑑 − 𝑐𝑐 = 0.003 540.5 − 171.35171.35 = 0.00646 > 0.005           𝑂𝐾 

Check for bar placement in one layer: 𝑆 = 300 − 40 × 2 − 10 × 2 − 3 × 362 = 46 𝑚𝑚 > 𝑑 = 36 𝑚𝑚,   > 25 𝑚𝑚       𝑂𝐾 
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CHAPTER 5                                         SHEAR IN BEAMS 

 

1.1. INTRODUCTION 
 
When a simple beam is loaded, bending moments and shear forces develop along the beam. 
To carry the loads safely, the beam must be designed for both types of forces. Flexural 
design is considered first to establish the dimensions of the beam section and the main 
reinforcement needed, as explained in the previous chapters. 
The beam is then designed for shear. If shear reinforcement is not provided, shear failure 
may occur. Shear failure is 
characterized by small deflections 
and lack of ductility, giving little or 
no warning before failure. On the 
other hand, flexural failure is 
characterized by a gradual increase 
in deflection and cracking, thus 
giving warning before total failure. 
This is due to the ACI Code 
limitation on flexural reinforcement. 
The design for shear must ensure 
that shear failure does not occur 
before flexural failure. 
By the traditional theory of homogeneous, elastic, uncracked beams, we can calculate shear 
stresses, 𝑣, using equation 𝑣 = 𝑉𝑄𝐼𝑏  

where   𝑉 − total shear at the section considered, 𝑄 − statical moment about the neutral axis of that portion of cross-section lying 
between a line through the point in question parallel to the neutral axis and 
nearest face, upper or lower, of the beam, 𝐼 − moment of inertia of cross-section about the neutral axis, 𝑏 − width of beam at the given point. 

 
The tensile stresses are equivalent to the principal stresses. Such principal stresses are 
traditionally called diagonal tension stresses. When the diagonal tension stresses reach the 
tensile strength of concrete, a diagonal crack develops. This brief analysis explains the 
concept of diagonal tension and diagonal cracking. The actual behavior is more complex, and 
it is affected by other factors. For the combined action of shear and normal stresses at any 
point in a beam, the maximum and minimum diagonal tension (principal stresses) 𝑓  are 
given by the equation 

Shear failure of reinforced concrete beam 
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𝑓 = 𝑓2 ± 𝑓2 + 𝑣   𝑓 − intensity of normal stress due to bending, 𝑣 − shear stress. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trajectories of principal stresses in a homogeneous isotropic beam. 



  59 
 

 

 

 

 

 

 

 

 

 

1.2. CRITICAL SECTIONS FOR SHEAR DESIGN 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In a beam loaded on the top flange and supported on the bottom as shown in the figure 
below, the closest inclined cracks that can occur adjacent to the supports will extend 
outward from the supports at roughly 45°. Loads applied to the beam within a distance 𝑑  
from the support in such a beam will be transmitted directly to the support by the 
compression fan above the 45° cracks and will not affect the stresses in the stirrups crossing 
the cracks shown. As a result, ACI Code Section 11.1.3.1 states: 
For nonprestressed members, sections located less than a distance 𝑑 from the face of the 
support may be designed for the same shear, 𝑉 , as that computed at a distance 𝑑. 

Trajectories of principal stresses in a homogeneous isotropic beam. 

Typical Locations of critical combinations of shears and moment 
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This is permitted only when 
1. the support reaction, in the direction of the applied shear, introduces compression 

into the end regions of a member, 
2. the loads are applied at or near the top of the beam, and 
3. no concentrated load occurs within d from the face of the support. 

Thus, for the beam shown below, the values of 𝑉  used in design are shown shaded in the 
shear force diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
This allowance must be applied carefully because it is not applicable in all cases. There are 
shows five other typical cases that arise in design. If the beam was loaded on the lower 
flange, as indicated in Fig. a, the critical section for design would be at the face of the 
support, because loads applied within 𝑑 of the support must be transferred across the 
inclined crack before they reach the support. 
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A typical beam-to-column joint is shown in Fig. b. Here the critical section for design is 𝑑 away from the section as shown. 
If the beam is supported by a girder of essentially the same depth, as shown in Fig. c, the 
compression fans that form in the supported beams will tend to push the bottom off the 
supporting beam. The critical shear design sections in the supported beams normally are 
taken at the face of the supporting beam. The critical section may be taken at 𝑑 from the 
end of the beam if hanger reinforcement is provided to support the reactions from the 
compression fans. 
Generally, if the beam is supported by a tensile force rather than a compressive force, the 
critical section will be at the face of the support, and the joint must be carefully detailed, 
because shear cracks will extend into the joint, as shown in Fig. d. 
Occasionally, a significant part of the shear at the end of the beam will be caused by a 
concentrated load acting less than d from the face of the column, as shown in Fig. e. In such 
a case, the critical section must be taken at the support face. 
 

1.3. TYPES OF WEB REINFORCEMENT 

 

 

 

 

 

 

 

 

 

 

 

  

a) Vertical Stirrups,  
c) Multiple-leg stirrups 
 61

 

b) U-shaped bars single stirrups. 
d) Bent-up  longitudinal (inclined) bars 
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The ACI Code defines the types of shear reinforcement as: 
 
11.4.1.1 — Shear reinforcement consisting of the following shall be permitted: 

(a) Stirrups perpendicular to axis of member; 
(b) Welded wire reinforcement with wires located perpendicular to axis of 

member; 
(c) Spirals, circular ties, or hoops. 

11.4.1.2 — For nonprestressed members, shear reinforcement shall be permitted to also 
consist of: 
(a) Stirrups making an angle of 45 degrees or more with longitudinal tension 

reinforcement; 
(b) Longitudinal reinforcement with bent portion making an angle of 30 degrees 

or more with the longitudinal tension reinforcement; 
(c) Combinations of stirrups and bent longitudinal reinforcement. 

 
 

 

1.4. DESIGN PROCEDURE FOR SHEAR 

 
Design of cross section subjected to shear shall be based on: 𝜙𝑉 ≥ 𝑉  

where 𝑉 − the factored shear force at the section, 

            𝑉 − the nominal shear strenght, 𝑉 = 𝑉 + 𝑉 , 
            𝑉 − the nominal shear strenght provided by concrete, 

            𝑉 − the nominal shear strenght provided by shear reinforcement (stirrups), 

 

The figure shows a free body between the end of a beam and an inclined crack. The 

horizontal projection of the crack is taken as 𝑑, suggesting that the crack is slightly flatter 
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than 45°. If  𝑠  is the stirrup spacing, the number of 

stirrups cut by the crack is 𝑑/𝑠. Assuming that all 

the stirrups yield at failure, the shear resisted by 

the stirrups is 𝑉 = 𝐴 𝑓 𝑑𝑠  

ACI Code 11.2.1 states, for members subject to 

shear and flexure only 𝑉 = 16 𝜆 𝑓 𝑏 𝑑 = 0.17𝜆 𝑓 𝑏 𝑑,              𝜆 = 1.0  𝑓𝑜𝑟 𝑁𝑜𝑟𝑚𝑎𝑙 − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 𝑉  shall be permitted to be computed by the more detailed calculation 𝑉 = 0.16𝜆 𝑓 + 17𝜌 𝑉 𝑑𝑀 𝑏 𝑑 ≤ 0.29 𝑓 𝑏 𝑑,                 𝑤ℎ𝑒𝑟𝑒          𝑉 𝑑𝑀 ≤ 1  
To simplify the calculations the formula  𝑉 = 0.17𝜆 𝑓 𝑏 𝑑   will be used. 

 

Shear conditions and cases (Items): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Check for dimensions: 

The ACI Code, 11.4.7.9, states that 𝑉  shall not be taken greater than 0.66 𝑓 𝑏 𝑑. 
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𝑆𝑜, 𝑖𝑓   𝑉 > 𝑉 , − 𝑇ℎ𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑒𝑛𝑙𝑎𝑟𝑔𝑒𝑑 (𝐷𝑖𝑚𝑒𝑛𝑠𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑒𝑛𝑜𝑢𝑔ℎ) 𝑤ℎ𝑒𝑟𝑒                𝑉 = 𝑉 − 𝑉 = 𝑉𝜙 − 𝑉 ,                       𝑉 , = 23 𝑓 𝑏 𝑑 

Case I:        𝑉 ≤ 12 𝜙𝑉      − 𝑁𝑜 𝑠ℎ𝑒𝑎𝑟 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  
Case II: 

 12 𝜙𝑉 <  𝑉 ≤  𝜙𝑉      – 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑠ℎ𝑒𝑎𝑟 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  𝐴 ,   𝑒𝑥𝑐𝑒𝑝𝑡: 
 footings and solid slabs, 

 Hollow-core units with total untopped depth not greater than 315 mm and hollow-

core units where 𝑉  is not greater than 0.5𝜙𝑉 ; 

 Concrete joist construction; 

 Beams with ℎ not greater than 250 𝑚𝑚; 

 Beam integral with slabs with ℎ not greater than 600 𝑚𝑚 and not greater than the 

larger of 2.5 times thickness of flange, and 0.5 times width of web; 

 Beams constructed of steel fiber-reinforced, normalweight concrete with 𝑓  not 

exceeding 40 MPa, ℎ not greater than 600 mm, and 𝑉  not greater than 0.17 𝑓 𝑏 𝑑.   
For these cases no shear reinforcement is required unless 𝑉 > 𝜙𝑉 . 
Minimum shear reinforcement, 𝐴 ,  

𝐴 , = 116 𝑓 𝑏 𝑠𝑓 = 0.062 𝑓 𝑏 𝑠𝑓    ≥    13 𝑏 𝑠𝑓 = 0.35 𝑏 𝑠𝑓 ,  
𝑜𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚                   𝐴 ,𝑠  ≥  13 𝑏𝑓  ≥  116 𝑓 𝑏𝑓   ,          

 𝐻𝑒𝑟𝑒                                                  𝑠 ≤ 𝑑2           𝑜𝑟         𝑠 ≤ 600 𝑚𝑚 

where      𝑠 −   step of stirrups (spacing between stirrups), 

                 𝑓 − yield stress of stirrups 

Case III: 𝜙𝑉 <  𝑉 ≤  𝜙 𝑉 + 𝑉 ,   𝐴 ,𝑠 = 𝑉 ,𝑓 𝑑  ⟹                  𝑉 , = 𝐴 ,𝑠 𝑓 𝑑 
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then,    𝑉 ,  is the maximum of  

𝑉 , = 116 𝑓 𝑏 𝑑           𝑎𝑛𝑑           𝑉 , = 13 𝑏 𝑑 

Minimum shear reinforcement is provided 𝐴 ,  with  

𝑠 ≤ 𝑑2           𝑜𝑟         𝑠 ≤ 600 𝑚𝑚 

Case IV: 𝜙 𝑉 + 𝑉 , <  𝑉 ≤  𝜙(𝑉 + 𝑉 ′)   − 𝑠𝑡𝑖𝑟𝑟𝑢𝑝𝑠 𝑎𝑟𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  
𝑤ℎ𝑒𝑟𝑒         𝑉 , < 𝑉 ≤ 𝑉 ,               𝑉 = 𝑉 − 𝑉 = 𝑉𝜙 − 𝑉                  𝑉 ′ = 13 𝑓 𝑏 𝑑  
𝑎𝑛𝑑                    𝐴𝑠 = 𝑉𝑓 𝑑. 
ℎ𝑒𝑟𝑒                                            𝑠 ≤ 𝑑2           𝑜𝑟         𝑠 ≤ 600 𝑚𝑚 

Case V: 𝜙(𝑉 + 𝑉 ′) <  𝑉 ≤  𝜙 𝑉 + 𝑉 ,   − 𝑠𝑡𝑖𝑟𝑟𝑢𝑝𝑠 𝑎𝑟𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  
𝑤ℎ𝑒𝑟𝑒         𝑉 < 𝑉 ≤ 𝑉 , ,                     𝑉 = 𝑉 − 𝑉 = 𝑉𝜙 − 𝑉  ,                 𝑉 = 13 𝑓 𝑏 𝑑,   
𝑉 , = 23 𝑓 𝑏 𝑑                            𝑎𝑛𝑑                    𝐴𝑠 = 𝑉𝑓 𝑑. 
 
ℎ𝑒𝑟𝑒                         𝑠 ≤ 𝑑4           𝑜𝑟         𝑠 ≤ 300 𝑚𝑚 

 
Example: 
The Figure shows the elevation and cross section of a simply supported T-beam. This beam 
supports a uniformly distributed service (unfactored) dead load of 20 𝐾𝑁/𝑚, including its 
own weight, and a uniformly distributed service live load of 24 𝐾𝑁/𝑚. Design vertical 
stirrups for this beam. The concrete strength is 25 𝑀𝑃𝑎, the yield strength of the flexural 
reinforcement is 420 𝑀𝑃𝑎, and the yield strength of the stirrups is 300 𝑀𝑃𝑎.  
 
The support reactions act usually at the center of supports with full span center to center 
of supports, in this example, we have no information about the support width, so we 
assumed that the shear calculations will be done for the given clear span with end 
reactions at the face of supports for the following all examples. 
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Important Note: 

In a normal building, the dead and live loads are assumed to be uniform loads. Although the 
dead load is always present over the full span, the live load may act over the full span, or 
over part of the span. Full uniform load over the full span gives the maximum shear at the 
ends of the beam. Full uniform load over half the span plus dead load on the remaining half 
gives the maximum shear at midspan. The maximum shear forces at other points in the span 
are closely approximated by a linear shear-force envelope resulting from these cases. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

` 

 

 

 

 

 

 

 

`



  67 
 

Solution: 

Critical section at 𝑑 = 610 𝑚𝑚 from the 

face of support. 𝑉  at 𝑑 = 610 𝑚𝑚. 416 − 645 = 𝑦5 − 0.61    ⟶ 𝑦 = 309 𝐾𝑁 

𝑉 = 𝑉𝜙 = 𝑦 + 64 = 309 + 64 = 373 𝐾𝑁 

𝑉 = 16 𝜆 𝑓 𝑏 𝑑 = 16 ∙ 1 ∙ √25 ∙ 300 ∙ 610 ∙ 10 = 152.5 𝐾𝑁. 
Check for section dimensions: 𝑉 = 𝑉 − 𝑉 = 373 − 152.5 = 220.5 𝐾𝑁. 𝑉 , = 23 𝑓 𝑏 𝑑 = 23 √25 ∙ 300 ∙ 610 ∙ 10 = 610 𝐾𝑁  𝑉 = 220.5 𝐾𝑁 < 𝑉 , = 610 𝐾𝑁   − 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒 𝑒𝑛𝑜𝑢𝑔ℎ. 
OR 𝑉 , = 𝑉 + 𝑉 , = 16 𝑓 𝑏 𝑑 + 23 𝑓 𝑏 𝑑 = 16 + 23 𝑓 𝑏 𝑑 = 56 𝑓 𝑏 𝑑 = 5𝑉  𝑉 , = 5 ∙ 152.5 = 762.5 𝐾𝑁 𝑉𝜙 = 373 𝐾𝑁 < 𝑉 , = 762.5 𝐾𝑁     − 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒 𝑒𝑛𝑜𝑢𝑔ℎ 

Find the maximum stirrups spacing: 𝑖𝑓         𝑉 < 𝑉 ′ = 13 𝑓 𝑏 𝑑         𝑡ℎ𝑒𝑛           𝑠 ≤ 𝑑2           𝑜𝑟         𝑠 ≤ 600 𝑚𝑚 

𝑉 = 13 𝑓 𝑏 𝑑 = 13 √25 ∙ 300 ∙ 610 ∙ 10 = 305 𝐾𝑁 𝑉 = 220.5 𝐾𝑁 < 𝑉 = 305 𝐾𝑁   𝑡ℎ𝑒𝑛    𝑠 ≤ 600 𝑚𝑚,                               𝑠 ≤ 𝑑2 = 6102 = 305 𝑚𝑚 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑉 = 373 𝐾𝑁 > 𝑉 = 152.5 𝐾𝑁        𝑜𝑟 𝑉 = 𝜙𝑉 = 0.75 ∙ 373 = 279.75 𝐾𝑁 > 𝜙𝑉 = 0.75 ∙ 152.5 = 114.375 𝐾𝑁 

Try minimum shear reinforcement: 𝐴 , = 116 𝑓 𝑏 𝑠𝑓            𝑏𝑢𝑡 𝑛𝑜𝑡 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 

𝐴 , =    13 𝑏 𝑠𝑓 ,                     − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙             ( 116 𝑓 = 516 < 13)    
Use stirrups U-shape (double-leg stirrups)  10  with  𝐴 = 2 ∙ 78.5 = 157.1 𝑚𝑚  

 𝑑 = 610 𝑚𝑚 

64 KN 

416 KN 

 𝑦 
  𝑎𝑡 𝑑  

5 m 
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𝑠 = 3𝐴 𝑓𝑏 = 3 ∙ 157.1 ∙ 300300 = 471.3 𝑚𝑚 >  𝑠 = 305 𝑚𝑚,      𝑡𝑎𝑘𝑒 𝑠 = 𝑠 = 305 𝑚𝑚  
𝑉 (  ) = 𝐴 𝑓 𝑑𝑠 = 157.1 ∙ 300 ∙ 610305 ∙ 10 = 94.26 𝐾𝑁 𝑉 = 220.5 𝐾𝑁 > 𝑉 (  ) = 94.26  𝐾𝑁,     𝑓𝑖𝑛𝑑 "𝑠" – 𝐶𝑎𝑠𝑒 𝐼𝑉 

Alternative step is to calculate 𝑉 ,   𝑉 , = 116 𝑓 𝑏 𝑑 = 116 √25 ∙ 300 ∙ 610 ∙ 10 = 57.2 𝐾𝑁  
𝑉 , = 13 𝑏 𝑑 = 13 300 ∙ 610 ∙ 10 = 61 𝐾𝑁       − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙  𝜙 𝑉 + 𝑉 , <  𝑉 ≤  𝜙(𝑉 + 𝑉 ′)   0.75(152.5 + 61) = 160.13 𝐾𝑁 <  𝑉 = 279.75 𝐾𝑁 <  0.75(152.5 + 305) = 343.13 𝐾𝑁   
Or   𝑉 = 220.5 𝐾𝑁 > 𝑉 , = 61 𝐾𝑁 − Case IV                  

Compute the stirrups spacing required to resist the shear forces. 𝐴𝑠 = 𝑉𝑓 𝑑     ⟹    𝑠 = 𝐴 𝑓 𝑑𝑉 = 157.1 ∙ 300 ∙ 610220.5 ∙ 10 = 130.4 𝑚𝑚. 
Take U-shape (double-leg stirrups)  10@125 𝑚𝑚 < 𝑠 = 305 𝑚𝑚. 
Changing "𝑠" to 𝑠 = 2𝑠 = 2 ∙ 125 = 250 𝑚𝑚 for another region. 𝐴𝑠 = 𝑉𝑓 𝑑 = 𝑉𝜙 − 𝑉𝑓 𝑑  ⟹    𝑉𝜙 = 𝐴 𝑓 𝑑𝑠 + 𝑉     𝑉𝜙 = 157.1 ∙ 300 ∙ 610250 ∙ 10 + 152.5 = 267.5 𝐾𝑁 416 − 645 = 267.5 − 645 − 𝑥    ⟶ 𝑥 = 2.1 𝑚 

 

 

 Example: 
The simply supported beam shown below is loaded by a service dead load of 40 𝐾𝑁/𝑚, and 
a uniformly distributed service live load of 25 𝐾𝑁/𝑚. Design vertical stirrups for this beam. 
The concrete strength is 25 𝑀𝑃𝑎, and the yield strength of the stirrups is 412 𝑀𝑃𝑎. 
 
 
 
 
 
 

64 𝐾𝑁 
416 𝐾𝑁 

 𝑥 

𝑉𝜙   
5 𝑚 

267.5 𝐾𝑁  

5.5 𝑚 100 𝑐𝑚 26 𝑐𝑚 
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Solution: 𝑤 = 1.2 ∙ 40 = 48   𝐾𝑁/𝑚,                                   𝑤 = 1.6 ∙ 25 = 40  𝐾𝑁/𝑚 

𝑉  𝑎𝑡 𝑓𝑎𝑐𝑒 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 𝑤𝑙2 = (48 + 40) ∙ 5.52 = 242 𝐾𝑁, 
𝑉  𝑎𝑡 𝑚𝑖𝑑𝑠𝑝𝑎𝑛 = 𝑤 𝑙8 = 40 ∙ 5.58 = 27.5 𝐾𝑁, 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Critical section at 𝑑 = 260 𝑚𝑚 from the face of 

support. 𝑉  at 𝑑 = 260 𝑚𝑚. 242 − 27.52.75 = 𝑦2.75 − 0.26    ⟶ 𝑦 = 194.22 𝐾𝑁 𝑉 = 𝑦 + 27.5 = 194.22 + 27.5 = 221.72 𝐾𝑁 𝑉 = 16 𝜆 𝑓 𝑏 𝑑 = 16 ∙ 1 ∙ √25 ∙ 1000 ∙ 260 ∙ 10 = 216.67 𝐾𝑁. 
Check for section dimensions: 𝑉 = 𝑉𝜙 − 𝑉 = 221.72 0.75 − 216.67 = 79 𝐾𝑁. 
𝑉 , = 23 𝑓 𝑏 𝑑 = 23 √25 ∙ 1000 ∙ 260 ∙ 10 = 866.67 𝐾𝑁  

242 𝐾𝑁 

𝑤 = 40 𝐾𝑁/𝑚 

𝑤 = 48 𝐾𝑁/𝑚 

 

5.5 m 

27.5 𝐾𝑁 
2.75  𝑚 5𝑑 = 260 𝑚𝑚 

Critical section at d from the face of 
support 

 𝑑 = 260 𝑚𝑚 

27.5 𝐾𝑁 
242 𝐾𝑁 

 𝑦  𝑉  𝑎𝑡 𝑑  

2.75 𝑚 
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𝑉 = 79 𝐾𝑁 < 𝑉 , = 866.67 𝐾𝑁   − 𝑡ℎ𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑙𝑎𝑟𝑔𝑒 𝑒𝑛𝑜𝑢𝑔ℎ. 
Check for 𝑉 , : 𝐴 , = 116 𝑓 𝑏 𝑠𝑓            𝑏𝑢𝑡 𝑛𝑜𝑡 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 

𝐴 , =    13 𝑏 𝑠𝑓 ,                     − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙             ( 116 𝑓 = 516 < 13) 

𝑉 , = 116 𝑓 𝑏 𝑑 = 116 √25 ∙ 1000 ∙ 260 ∙ 10 = 81.25 𝐾𝑁  
𝑉 , = 13 𝑏 𝑑 = 13 1000 ∙ 260 ∙ 10 = 86.67 𝐾𝑁       − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙  𝜙𝑉 <  𝑉 ≤  𝜙 𝑉 + 𝑉 ,  0.75(216.67) = 162.5 𝐾𝑁 <  𝑉 = 221.72 𝐾𝑁 <  0.75(216.67 + 86.67) = 227.51 𝐾𝑁   
Or   𝑉 = 79 𝐾𝑁 < 𝑉 , = 86.67 𝐾𝑁 − Case III 𝐴 ,𝑠 = 116 𝑓 𝑏𝑓         𝑏𝑢𝑡 𝑛𝑜𝑡 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛     𝐴 ,𝑠 =    13 𝑏𝑓 ,    𝐴 ,𝑠 = 116 √25 1000412 = 0.7585         𝐴 ,𝑠 =    13 × 1000412 = 0.80906  − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙  
Use stirrups 2U-shape (4-leg stirrups)  8 𝑚𝑚  with  𝐴 = 4 ∙ 50.27 = 201.1 𝑚𝑚  201.1𝑠 =   = 0.80906          ⟹      𝑠 = 248.6 𝑚𝑚 

𝑠 ≤ 600 𝑚𝑚,                               𝑠 ≤ 𝑑2 = 2602 = 130 𝑚𝑚 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

Take 2U-shape (4-leg stirrups)  8@125 𝑚𝑚 < 𝑠 = 130 𝑚𝑚 
 
 
 
 
 
 
 
 
 
 
 
 
 

100 𝑐𝑚 

26 𝑐𝑚  8@125 𝑚𝑚 

 8@125 𝑚𝑚 

 8@125 𝑚𝑚 
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