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2 1.1 Overview

1.1 OVERVIEW

There are three most common types of structures such as: reinforced
concrete, steel and wood that using will be extensive at the civil engineering
and architecture branch.

Reinforced concrete structures can build bridges, buildings, water tanks,
roads, retaining walls, tunnels and others.

Reinforced concrete is consisted of five materials such as: water, cement,
aggregate, sand and steel. The first four materials are called plain concrete,
which carry high compressive strength comparing with its tensile strength,
and the fifth is embedded in concrete to resist the tensile stresses.

Concrete and steel work jointly for the following reasons:

1 - After hardness of reinforced concrete, the bond is increased between
concrete and steel.

2 - Ifafire happened, the concrete would protect the steel against corrosion.

3 - Thermal expansion is 0.000010 to 0.000013 per degree Celsius (C°) for
concrete.

4 - Thermal expansion is 0.000012 per degree Celsius (C°) for steel.

1.2 CODE OF PRACTICE

A code is a specification helping the designer to ensure the safety of the
public.
In this book, we will use two kinds of codes; the first one is ACI code and

second one is LRFD code. The important codes known are:

1 - ACI 318-02, The American Concrete Institute for Reinforced Concrete
Buildings.

2 - LRFD, Load & Resistance Factor Design, for Steel Buildings.

3 - AASHTO, The American Association of State Highway and Trans-
portation Officials, for highway bridges.

4 - AREA, The American Railroad Engineering Association, for railroad bridges.

B.S. (British standard BS 8110).

6 - ECC-2000, Egyptian code.

i
1

1.3 ACI CODE

The American Concrete Institute (ACI) Code produces the factored load
multiplying by the service load. The factored load must be greater than the service
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laod. The ACI code has used factoral load U as a combination of dead load, live
load, wind load, earthquake load, lateral earth pressure and fluid pressure.

In addition, dead load D and live load L are the service loads or the
effective loads: The dead load consists of structural self-weight, partitions,
ceilings, and all mechanical equipements and the live load consists of
furniture, people, wind, earthquake or soil pressure.

The ACI code specifies dead load D and live load L, as shear force,
bending moment and axial force.

The load factors for the different cases are given in the following, as in the
ACI9.2.1 code;

U=12D+1.6L

Where D and L represent the service dead and live load respectively, and U
represents the total factored load.

U=12D+1.6W+1.0L
U=09D+1.6W

Where W is the wind load, when the live load and wind load are acting
together on the structure.

U=12D+1.0E+1.0L
Where earthquake force E is included in the design
U=12D+1.6(L+ H)

Where lateral earth pressure H is involved, it is considered as live load and
the above equation becomes as following:

U=09D+1.6H
U=12D+12F+1.6L

Where liquid pressure F is involved, the pressure is considered as dead load,
and the equation becomes as following:

U=12D+12T+1.6L

If the temperature changes, shrinkages, creeps and the differential settlement
T becomes as dead load D:

U=12(D+T)
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1.4 STRENGTH REDUCTION FACTORS

The design strength is equal to or greater than the required strength, and the
ACI code specifies the nominal strength in accordance and assumptions, and
also is designated by the subscript #.

Design strength > Required strength
¢ Nominal strength > Required strength

¢ Py2>Py
¢ My, =M,
¢VnZVu

Where P,, M, and V), are the axial compression, bending moment and shear,
respectively, and the nominal strength (x) in the subscript.
Where P,, M, and V, represent the required strength.

Table 1.1 Reduction factors ¢

Nominal Strength Reduction factor ¢
- Flexure, with or without axial tension, 0.90
- Shear and torsion 0.75
- Bearing on concrete 0.65
- Compression member, spirally reinforced 0.70
- Columns with ties 0.65
- Bending in plain concrete 0.55
Example 1.1

Determine the required strength P, and nominal strength P,. If a dead
load D =150 KN and a live load L = 120 KN, assume the reduction
factor ¢ = 0.65

Solution.

Multiply the load factor by the respective service load to produce P,
U=P,=12D+1.6L
P, =1.2(150) + 1.6(120) = 372 KN (83.6 kips)
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The nominal strength is:
¢ Pn Z Pu

P, ;
Required P, = ry = 017625 = 572.3 KN (128.7 kips)

Example 1.2

Compute the nominal flexural strength M, and apply factored loads to
the simply supported beam as shown in Figure 1.1. Assume a
concentrated load P, = 30 KN and ¢ = 0.9

P, =30 KN

Tm
e >
P,L
M, = 1
Figure 1.1
Solution.
Pyl
My, ="
4
30(7
M, = # = 52.5 KN.m (38.7 ft-kips)
¢ My, > M,
52.5
M, = —— = 58.33 KN.m (43 ft-kips)

0.9
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2.1 CONCRETE

Plain concrete is a mixture of fine aggregate, water, cement and coarse
aggregate. All the components of the plain concrete are mixed together until
they become a paste, which surrounds the voids in aggregate during its fresh
concrete. The steel bars are placed into forms and a concrete paste is filled
around the steel bars until it changes from a plastic to a solid state in about
24 hours, to become reinforced concrete, as shown in Fig. 2.1.

The expected outcomes of concrete properties are effected by their ingredients
which are expected to give reasonable data as designed in the beginning.
Compressive strength, modulus of elasticity and Poisson’s ratio are also expected
to give good agreement at 7,14 and 28 days tests. As a result, the good
homogeneous material gives a good relation with embedded steel bars in concrete
forms. Therefore, the expected outcome will be more accurate not only for good
homogeneous between the composite materials, but also during the cure cycle.

Workability

The slump is the difference between height measured of the steel cone and
the top of fresh concrete after the cone had lifted. The slump test is used to
control the workability and quality of concrete, as shown in Figure 2.2

.

Figure 2.1 Composite material.
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Figure 2.2 Slump test.

2.2 COMPRESSIVE STRENGTH

Compressive strength ch depends upon water, the cement ratio and the quality
of the cure cycle. According to the ACI code, the compressive strength of
concrete f, is obtained from the standard test cylinder 6 - in. (150 mm)
diameter by 12- in (300 mm) high measured at 7, 14 and 28 days of age before
testing. After 28 days of water curried or placed in a constant temperature
room to obtain 100 percent of humidity. Then, the preparation starts by
replacing the specimen on the MTS (Material test system), as shown in Fig.
2.3. In this test, the concrete is subjected to compressive stresses and not to
tensile stresses: therefore, a specimen is used to determine the concrete
compressive strength by many shapes such as: cylinder 150 x 300 mm (ACI
code), Prism 70 x 70 x 350 mm (France) and cube 150 x 150 x 150 mm
(Germany, Egypt, Great Britain).

Table 2.1 shows the value of compressive strength (Wayne State University-
Structure Lab.).
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Typical stress - strain relationship for concrete cylinder produced by

compressive strength test, is shown in Fig. 2.4.

The shape of curve depends on the age of specimen, the composite of

concrete material, MTS machine and loading.

The ACI code defines that the maximum concrete strain, is 0.003, and for
high - compressive strength f'c, between 8000 to 12,000 psi (55.12 to 82.7
MPa). Nonprestressed structures are: 3500 to 6000 psi (24.11 to 41.34 MPa).
For greater than 6000 psi (41.34 MPa) is used for prestressed concrete.

Table 2.1 Compressive strength (MPa)

Age Specimen Number Mean Std. Dev.
(days) 1 2 3 4 (MPa)
7 4926 | 49.78 | 49.54 | 47.11 48.92 1.226
14 58.1 58.8 55.39 | 56.12 571 1.609
28 66.62 | 6491 | 6247 | 60.28 63.57 2
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Figure 2.4 Concrete stress - strain curve

2.3 MODULUS OF ELASTICITY

The ACI code determines a value of the modulus of elasticity of concrete
E = wl-5(33)\/f7; psi for normal concrete, and the slope of the stress-strain
curve defines the initial modules used with the parabolic stress method. For
values of w, between 90 and 155 Ib/ft* (1500 and 2500 kg/m?), the ACI code
specifies modulus of elasticity E,

wl3(33) \/17'6 psi
B, = (2.1)
wl3(0.0432), /1. MPa
Where w, is the unit weight of concrete between (1500 and 2500 kg/m?), and

the value of w, when made from crushed stone is: 145 Ib/ft*> (2353kg/m>).
Substituting Eq. (2.1) in value w, becomes:

,
57000 \/7,  psi

Ec={ 4700 \/f.  MPa(E, and f, in MPa) (2.2)

| 15000 /f,  kef/em® (E. and /, in kfg/cm?)



12 2.3 Modulus of Elasticity

For most concrete, the Poisson’s ratio is equal to the transfer strain divided
by the longitudinal strain; v = (0.2 to 0.23)
Table 2.2 shows the values of E,, for w, = 145 1b/ft3

Table 2.2 Values of E,
ST units Inch - pound units
I, /c (MPa) E. (MPa) ¥ /c (psi) E. (psi)
20.67 21368 3000 3,122,018
24.11 23077 3500 3,372,165
27.56 24673 4000 3,604,996
31.00 26168 4500 3.823,676
34.45 27586 5000 4,030,508

Multiply MPa values by 10.2 to get kgf/cm?

Modular Ratio, n

The relation: stress - strain for reinforcement steel, is a linear under the yield
stress, which is compared with concrete curve. But in concrete, it is assumed
as a linear it varies with its density and strength. The modulus of elasticity of
the steel is:

E; = 29,000,000 psi (199926000 KPa =~ 200,000 MPa).

Table 2.3 Values of modular ratio, »

SI units Inch - pound units
/. (MPa) n fe (psi) n
20.67 93~90 3000 9290
24.11 8.6 ~ 8.5 3500 8.6 ~ 8.5
27.56 8.1~8.0 4000 8.04 ~ 8.0
31.00 622 75 4500 7.56 & 7.5

34.45 7270 5000 72=17.0
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2.4 CONCRETE TENSILE STRENGTH

Tensile strength is low about 10 to 15% of the compressive strength, and
usually is determined by using the split - cylinder test and using the same size
of compressive strength.

At the end of the curing period, several experiments will be conducted on the
specimens to obtain the tensile strength, as shown in Fig. 2.5.

— 1 ‘ -

Figure 2.5 Tensile test (Wayne State University- Structure Lab.)

The difference between tensile strength and compressive strength is that
the fine cracks existing in concrete, and during the tensile test, the stresses
flow cracks and voids, but in compression test, the cracks and voids are able
to transmit compression stresses.

The tensile test is called splitting test in the form of a 6 in. diameter by 12
in. length (150 x 300mm)
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Where f., is splitting - cylinder tensile strength
From ACI code the modulus of rupture is:

5=15\fo> 1120y psi (2.4)
or
£=07,/f.>126f,  MPa (2.5)

2.5 SHRINKAGE, CREEP AND TEMPERATURE

Shrinkage

For normal weight concrete, the value of shrinkage is 0.0003 when the
specimen after casting is submerged in water not less than 7 days.

To avoid high shrinkage in the concrete, we have to consider proportional
size of aggregate, water- cement ratio and humidity.

The Branson gives a standard shrinkage strain equation (for less than 4 in.
slump and thickness of member about 6 in. after 7 days moist cured).

== (5557 e 2.6)

Where ¢ is (days) after moist curing, and (eg,), is an ultimate shrinkage strain.
Branson suggests using 800 x 10 in/in.

Creep

The creep deformation occurs under a constant load during its life and the
creep increases with early age, then decreases with time. That function is
with modulus of elasticity E. and compressive strength.

Temperature

The concrete coefficient is expanded with increasing temperature that equal to
6 x 10 in/in/"F (10 x 10°/C°) and for steel is equal to approximately (11 x 10°6/C°).

2.6 REINFORCING STEEL

Reinforcing steel is an important material with reinforced concrete to resist
tensile stresses, increase the compressive strength and to increase the bond
between concrete and steel.

The size of bars under ACI code are 0.375 to 2.257 in. in diameter (9.5 to
57.3mm), and in the SI units are 6.0 mm to 57mm nominal diameter.
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All reinforcement steel bars smooth or twisted are rounded, and modulus
of elasticity Ej for steel is 29,000,000 ( f 'c in psi) by ACI code, and in the SI
units is 200,000 ( /, in MPa).

Table 2.4 determines the nominal dimensions for number of bar, diameter,
area and weight. According to ASTM and SI units.

Table 2.4 Reinforcing bar dimensions.*

Bar Diameter Area Nominal weight
Number in mm in? mm?> Ib/ft kg/m
3 0.375 N 0.11 71 0.376 0.559
4 0.500 12.7 0.20 129 0.668 0.995
5 0.625 15.9 0.31 200 1.043 1.552
6 0.750 19.1 0.44 284 1.502 2.235
7 0.875 222 0.60 387 2.044 3.041
8 1.000 254 0.79 510 2.670 3.973
9 1.128 28.7 1.00 645 3.400 5.059
10 1.270 323 1.27 819 4.303 6.403
11 1.410 35.8 1.56 1006 5,313 7.906
14 1.693 43.0 2.25 1451 7.65 11.38
18 2.257 57.3 4.00 2580 13.60 20.24

The shape of steel bars are various from exterior shape and diameter, as shown
in Fig. 2.6. For metric bar sizes introduced in Middle East are more convenient
than American bars size because there are only 9 bars. Therefore, the amount
of steel in metric calculations is higher that makes the diameter of bar
restricted by reducing the number of bars.
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Figure 2.6 Reinforcing steel bars. (Courtesy of Concrete Reinforcing Steel Inst.)

The stress-strain relationship for steel, shown in Fig. 2.7 is depended on
ACI code, for designing concrete structures.

The value of modulus of elasticity E; for all Grades of steel is equal to
29000 ksi (200 GPa, 204 x 10* kg/cm?). To compute yield point at the stress
side, when the strain increases, the yield stress is reduced immediately, as
shown in Figure.

fs A
High tensile steel (high carbon)

normal steel
Sy —+ design curve

" Yield point

E; =29 x 10° psi (2 x 10° MPa, 204 x 10* kg/cm?)

Stress psi

Elastic plastic

€y Steel strain, in/in (mm/mm) &

Figure 2.7 Stress - Strain curve for steel.
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Table 2.5 Area of cross- section of U. S. bars (in?)

Bar [l;li(:::t?r Number of bars —
Nogd st td 203l afstiel7ls]oluw “f;%t 4
3 0.375 | 0.11}0.2210.33]|044]0.55]0.66]0.77 088099110 0376
4 0.500 | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 | 1.20 | 1.40 | 1.60 | 1.80 | 2.00 | 0.668
5 0.625 | 03110621093 |124]1.55]|1.86]2.17|248]2.79]3.10| 1.043
6 0.750 10441088 |132|1.76]220|2.64]3.08]3.52]3.96]|440| 1.502
7 0.875 |0.60 | 1.20 | 1.80 | 2.40 | 3.00 | 3.60 | 4.20 | 4.80 | 5.40 | 6.00 | 2.044
8 1.000 |0.79 [ 1.58 | 2.37 [ 3.16 | 3.95 | 4.74 | 553 } 6.32 | 7.11 | 7.90 | 2.670
9 1.128 ] 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 | 7.00 | 8.00 | 9.00 |10.00{ 3.400
10 1.270 | 1.27 1254 | 3.81 [ 5.08 | 6.35 | 7.62 | 8.89 |10.16|11.43[12.70] 4.303
11 1410 | 1.56 | 3.12 | 4.68 | 6.24 | 7.80 | 9.39 {10.92]12.48]14.04|15.60( 5.313
14 1.693 | 2.25(4.50|6.75{9.00 |11.25|13.50{15.75| 18.0 ]120.25}22.50] 7.650
18 2257 | 4.00 | 8.00 |12.00}16.00] 20.0 | 24.0 {28.00| 32.0 |36.0040.00( 13.60
* Number 3 and 4 are generally used in stirrups
* Number 14 and 18 are generally used in columns.
Table 2.6 Area of cross- section of SI bars (mm?)
5 Number of bars
mo | 1| 2 F %o 4 jessk | el 9 | 10 ‘Z;‘*gi/g:
6 283 | 56.6 | 84.8 | 113 | 141 170 | 198 | 226 | 254 | 283 0.222
8 50.3 | 101 181 201 | 251 | 302 | 352 | 402 | 452 [ 503 0.395
10 | 785 | 157 | 236 | 314 | 393 | 471 | 550 | 628 | 707 | 785 0.617
12 113 | 266 | 339 | 452 | 565 | 679 | 792 | 905 | 1020 | 1130 | 0.888
14 154 | 308 | 462 | 616 | 770 | 924 | 1080 | 1230 | 1390 | 1540 1.21
16 201 | 402 | 603 | 804 | 1005 | 1206 | 1407 | 1608 | 1810 | 2010 1.58
18 254 | 509 | 763 | 1020 | 1270 | 1530 | 1 780 2040 | 2290 | 2540 2.00
20 314 | 628 | 942 | 1260 | 1570 | 1880 | 2200 | 2510 | 2830 | 3140 247
22 380 | 760 | 1140 | 1520 | 1900 | 2280 | 2660 | 3040 | 3420 | 3800 2.98
25 491 | 982 | 1470 | 1960 | 2450 | 2950 | 3440 | 3930 | 4420 | 4910 3.85
28 616 | 1230 | 1850 | 2460 | 3080 | 3700 | 4310 | 4930 | 5540 | 6160 4.83
30 707 | 1410 | 2120 | 2830 | 3535 | 4240 | 4950 | 5660 | 6360 | 7070 555
32 804 | 1610 | 2410 | 3220 | 4020 | 4830 | 5630 | 6430 | 7240 | 8040 6.31
34 908 | 1820 | 2720 | 3630 | 4540 | 5450 { 6360 | 7260 | 8170 | 9080 a3

To obtain area in cm? divide mm?/100
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Table 2.7 Minimum cross- section width for bars in single layer (in)

Bar Number of bars

size 2 3 4 5 6 7 8
5 72 8.8 10.5 12.0 13.5 15.2 16.8

7.3 9.0 10.6 12.4 14.1 15.9 17.6
7 7.4 9.4 11.2 152 15.0 17.0 19.0
8 75 9.5 11.4 13.4 16585 17.5 19.4
9 7.6 9.1 12.3 14.5 16.7 19.1 - W
10 e 10.3 13.2 15.6 18.1 20.6 23.2
11 8.2 11.0 13.9 16.7 19.5 22.3 25.1
14 8.8 12.1 1555 19.0 224 258 29.0
18 10.5 15.0 19:5 24.0 28.4 33.0 £ Hnd
* Number 3 and 4 assumed as stirrups
Table 2.8 Properties of U. S. bars and metric bars
Metric | TS I.\’[etric _U S | Metric | U.S Perimeter
Bar No. | Bar No. diameter dllr.leter arez; a.reza 38, s
(mm) (in) (mm”) (in%)

10 3 9.52 0.375 71.2 0.11 30 1.18
13 4 12.7 0.500 126.7 0.20 40 1.571
16 5 15.87 | 0.625 197.8 0.31 50 2.0
19 6 19.05 | 0.750 285 0.44 60 2.36
28 7 2222 0.875 |l 5843 0.6 70 4.75
25 8 254 1.000 | 506.7 0.79 &0 3.142
29 9 28.65 1.128 | 644.7 1.00 90 3.544
32 10 32.26 1.270 | 817.3 1.27 101.5 4.00
29 11 35.81 1.41 1007.2 1.56 112.5 | 4.430
43 14 43.0 1.693 | 14522 | 2.25 135 532
57 18 3533 2.257 2581 4.00 180 7.1
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3.1 INTRODUCTION

Analysis and design of reinforced concrete beams are based on the following

fundamental propositions:

1 - The external force should be in equilibrium with the internal stress of
the concrete beam.

2 - Deflection control.

3 - The control of crack should be a perfect adhesive between surrounded
steel bars and concrete to ensure that no slip will take place.

4 - Stress - strain curves are assumed in a good relationship.

5 - Design strength of the beam will be greater or equal to a required strength.

3.2 UNCRACKED SECTION

If the moment in the cross- section, as shown in Fig. 3.1a, is large, the tensile
strength of the concrete is smaller than tensile stresses of the steel and the
cross- section will expose to crack. But if the moment, as shown in Fig. 3.1b
is small, the cross- section will not crack.

The ACI code has defined the standard beam equation as follow, and has
replaced fequal f,.

f:— fr: ) Mcr:Igﬂ (31)

Where M is moment in the section, y distance from the outer ead to
centroid, /; moment of inertia and f equal to f; is stress from centroid to end
of cross-section.

2 . f=0857, Je
¥ g S T K B =
¢ ’ Py
d - - s ;
a »
arm=d—§ A g
Y oo o o ° ° — £, |e® e b_,fs
(a) crack M > M,, (b) uncrack M < M.,

Figure 3.1 Cracking and uncracking section.
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Example 3.1
Calculate the cracking moment M., and P where fJC = 30 MPa and the
dimensions of cross- section as shown in Fig. 3.2.

—9 b = 400 mm
l Iy F\ ‘».,»'vﬁ

om o h=600mm | || - . " -|| |d=560mm

W v o F wmm

Figure 3.2 Rectangular cross-section.

Solution.

Compute I,
_ b_h3 400 x 600°
12 12

From Eq. (2.5) f,=0.7 \/ch (metric units)

I, =7.2 x 10° mm* (17280 in*)

£, = 0.7 v/30 = 3.83 MPa (0.55 ksi)

ho 600
y,—5-7—300 mm
9
M, =lefr _T2X10G8) 5, 107 Nmm (92 KNm)
Vi 300

PL
M= 5= M.,

4x92
P=2%22_ 368 KN (8.27 kips)

10
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Example 3.2

Recalculate example 3.1 by using inch - pound units for cracking moment
M, If £, = 4000 psi, b = 16 in, h = 24 in. and f;, = 350 psi.

Solution.
Compute I, \
bh®  16(24) . 4
I = ——= =
=1 o 18432 in
From Eq. 2.4
fr=7.5 V4000 = 474 psi > 1.12 f,
Jr =474 psi > 1.12(350) = 392 psi O0.K
r 1, :
Mc,:f 8 y,:%=121n
Vi 2
474 ksi
M= ksllz(18432) = 728 in.kips
= 60.6 ft.kips (82.2 KN.m)
3.3 FLEXURAL FAILURE

When the beam of concrete is loaded to failure, there are three possible types
of failure such as: balanced, ductile and brittle.

Balanced

If the section reached the compression zone which is the top surface, the strain
is 0.003. At same time when the steel stain reaches ¢,. In this case, the section
will be in a balanced condition or in a balanced amount of reinforcement as
shown in Fig. 3.3.

€. =0.003

(N.A) neutral axis

.A -P"".-
v fao T el
Y e @

gs =gy

Figure 3.3 Balanced failure.

€5 = €, ( Balanced condition)
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Ductile

This type of failure is called ductile. An important thing: this failure takes place in
under - reinforcement section is that tension steel reaches its yield strain ¢, before
concrete section reaches its maximum strain e, = 0.003. On the other hand, the
steel strain is greater than the yield strain. Ductile failure is recommended because
it is noticeable when the failure cracks happen, and gives enough warning before
collapsing, and in the ACI code this is the only acceptable type of failure.

g = 0.003

(N.A) 7

£y > &y

(@ (b)

Figure 3.4 Ductile failure.

When
s > €, (Tension control)
T=A4;f
Li=E e =1 Co=A, f;
As fs =45 fy
Brittle

This failure should not be recommended, therefore the ACI code ensures
that section in under- reinforced by placing limits on reinforcing steel ratio
and the maximum depth of necutral axis to the total depth, because this
failure occurs without any warning.

When
es < g (Compression control)

f;:Es Es T:Asfs:As(Es 55)
A fi = A, E, & Cs=A.f,=A(E )
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e. = 0.003

d (N.A)

o 0. .9 L—» fi=E¢&;
g5 < €

(@) (b)

Figure 3.5 Brittle failure.

3.4 THE BALANCED RECTANGULAR SECTION

A cross- section of the reinforced concrete beam is a balanced strain, when
the section is reached in top fiber of compression zone, the maximum strain
€cu 18 0.003 with the yield strain e, equal to steel strain e;. On the other hand,
when the area of steel A, is greater than the area steel balance A4y, the
internal force in concrete C is equal to the steel force 7. That means, the
depth of a wall increases, and the distance c is greater than c,. Or the depth
will be reduced and the distance ¢ will be smaller than ¢;. This balanced
strain condition is shown in Fig. 3.6.

The reinforcement ratio pj is created from the following equations, which
are obtained from equilibrium and compatibility.

Ay ,
=14 (if A5 known)
0.856, f 87,000 )
- c : 3.2
P I (87, 000 + fy(psi) :2)

For the reinforcement ratio p, it may be obtained from the linearity of the
strain condition:
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£eu = 0.003 0.85 f..
ch abI ; G
N.A —
d I = - - T
A;bl = py'bd |
o .. L J —bTb:Asbf:v
H*" _ _ fy
Es =By = E
cross-section strain force
steel
5T Figure 3.6 The balanced
£t f rectangular section.
i concrete
[
& 0003 ¢
Cp Eecu f:v
- | B =2 3.3
d eu + g Ei E; (33)
0.003 87,000
o= 0.003 + fy/29000000 (d) = 87,000 + f} o
600
e SI
% =50 + 7, @

For E; = 200 GPa (200 000 MPa) and f, in MPa

From equilibrium Eq.

Ty =G
A £, =0851. b ay
ap =[P ¢

Ap £, =0851. b B c

4. _085B /. b (87,000
- 5 87,000 + f,

_Aw
Pb bd

_ 0856 f. 87,000
3 87,000 + f,

Pb
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0.85 6 f. 87,000
7 (87,000 n f}) Inch — Pound
Py = (3.4)
0.85 81 f, < 600 > -
1, 600 + f, (MPa)

Where (; is the strength factor, if the compressive strength is less than or
equal to 4 kips/in® (27.57 MPa), 3, is 0.85 and between 4 to 8 ksi (27.5 to
55.1 MPa), the value 3; gets from equations as shown in Fig. 3.7, and more
than 8 ksi (55.1 MPa), (; is equal to 0.65.

Where a=p0;¢

B =0.85 f. < 4ksi (27.5 MPa)
B = 0.85—0.05 (f, ksi — 4) 4 ksi < f, < 8 ksi

= 0.85 — 0.007 (f, — 30) 30 MPa < f,, < 58 MPa
B = 0.65 £, > 8 ksi (58 MPa)

B = 0.85 / B =0.85—0.05 (f, — 4) inch — pound

/ B = 0.65

B1 =0.85-0.007 (/. —30)  SI

| |

| |

6 8 ksi
1.3 58 MPa

Figure 3.7 Variation of 4; with 28 - day compressive strength’.
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Example 3.3

The dimensions of the cross- section, is shown in Fig. 3.8. Use f;, = 350 MPa
and ch = 35 MPa. Compute 3; and check if the steel strain £, exceeds the
strain of steel yield ¢,,.

b =300 mm €. = 0.003 0.85 1.,
-
/ 3 C—I aI « ““—C
ot |d=400 mm P
S d—c 4
.,‘ ‘. v v - T
Es
As = 650 mm?

Figure 3.8 Cross-section beam.

Solution.
Equilibrium Eq. T=C A f, =085 f, ba
650 x 350 = 0.85 (35) 300 a
227,500
=305 25.5 mm
From Fig. (3.7) B, = 0.85 —0.007 (35 — 30) = 0.81 SI
Where c:%z%:?ﬂjmm
0.003 &
¢c d-—c

_0.003 (400 — 31.5)

= —0.0351
. 315 ¢

£ 350
=P — 0.00175
= E, 200,000

Since £, = 0.0351 > ¢, = 0.00175, the beam is underreinforced. O.K
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Example 3.4
Recomputed Example 3.3, where f, = 50 ksi, fJC = 5 ksi and the dimensions
of the cross-section are b = 12 in., d = 16 in. and 4, = 2.25 in>.

Solution.
T=C Asf,=085f,ba
2.25 (50 000 psi) = 0.85 (5000 psi) 12 a

112,500

a= 51,000 =2.21n

B =0.85—-10.05(5—4)=0.8

a 2.2

e Iy
¢ 5 =08 in
0.003 &
¢c d-c
0.003 (16 — 2.75)
e — 0.0144
. 275
50
. — 0.00172
&=F ~29000 20017

since £, = 0.0144 > ¢, = 0.00172 (the beam is underreinforced) O.K

3.5 MAXIMUM AND MINIMUM REINFORCEMENT RATIOS

Maximum Reinforcement Ratio ppax

The ACI-02 section 10.3.5 requires that the net tensile strain &, shall not be
less than 0.004. In the previous editions of the ACI code, this limit was not
stated, but was implicit in the maximum tension reinforcement ratio that
was given as ppax = 0.75 pp. According to ACI-02, the maximum
reinforcement ratio can be estimated from:

Cmax . Ecu . 0.003

= = = 0.4286
d €+ 0.003 4 0.004
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Gaax = P Cmax = id (0.4286)
As.maxfy =0.85 flc b Gmax

= 0.85 f,, 1 bd (0.4286)

0.364 S £, bd

As.m y ==
ax f)
_ Asmax _ 0.364 51 f,
Pmax bd fy
0.364 8, f,
Pmax = ‘f—ﬂlfc (3'5)
y

The distance ¢ from the top surface to the neutral axis is determined by:

Cmax = 0.43 d (3.6)

Example 3.5
Determine if the steel is enough to use it in the cross-section (b = 12 in.,
d=2051n.,4;= 6.0 inz.,f'c = 4 ksi and f, = 40 ksi) as shown in Fig. 3.9.

b=12in = 0 003 0.85 1,
V 5T ap
2
a;, =0.85 ¢ - Cp
Cb .
_d =20.5in
o o ® ¥ — T
Ey
A = pp db ’
Figure 3.9
Solution.
a - Determine ppax
/ .
51 = 0.85 where f, =4ksi

_ 0364 81 f,  (0.364)(0.85)(4)
pmax f;} - (40)

=10.031
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Pmax bd
(0.031)(12)(20.5) = 7.61 in*

6 in? < 7.61 in?

Asmax =
Asmax =

Ay O.K.

I

0.85 f, ab = 4, f,

(0.85)(4) a(12) = (6)(40)
a=5.88in

a 5388

c= =6.921n

B 0.85

€; d—c_20.5—6.92

0003 ¢ 6on 1992

e, = (0.003)(1.962) = 0.0059 > 0.004 OK.

Table 3.1 Maximum reinforcement ratio pn.x for tension reinforcement only

(Rectangular section)

£ (MPa) f. =20 MPa | f, =25MPa | f. =30 MPa | f, = 35 MPa
Paf- B =085 /1=08 | 5 =08 | 5 =081
280 0.0221 0.0276 0.0331 0.0370
350 0.0177 0.0221 0.0284 0.0296
420 0.0147 0.0184 0.0237 0.0247
ay | f. =200 kgf/em? | £ = 250 kgf/em? | £, = 300 kgf/em® | £, = 350 kgf/em?
Iy (kgf/em®) 1°€ 5 o8 By =085 By =085 B =081
2800 0.0221 0.0276 0.0330 0.0368
3500 0.0177 0.0221 0.0264 0.0295
4200 0.0147 0.0184 0.0220 0.0246
£, (osi) f.=3000 psi | £, =4000psi | £, =5000psi | £, = 6000 psi
y P By = 0.85 B =085 3 =08 B =075
40000 0.0232 0.0309 0.0364 0.0410
50000 0.0186 0.0248 0.0291 0.0328
60000 0.0155 0.0206 0.0243 0.0273
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Minimum Reinforcement Ratio oy,

Although the ACI code limits the minimum reinforcement ratio pmin = 200/f;,
this equation will not be sufficient for compressive strength fJE and will not be
greater than 5000 psi (35 MPa). For more detail about pmi (see Table 3.2).

200

Jy(psi)
Pmin = 14 (3 7)
Jfy(MPa) L

For rectangular section. Where the minimum area of steel Asmin 1S required
for tensile reinforcement, the following equation determine that for
rectangular section (ACI- 10.5.1).

( 200 b,d _ 3 \ﬁ w
N
Ao, = (3.8)
1A%l o \/Zb d SI
L H T AL

1

Where f,. = compressive strength at 28 - day, psi (MPa)

o

|

b, = width of web, in (mm)

d = effect depth, in (mm)

Jfy = steel yield

For T-section. The ACI- 10.5.2 gives new formula for T-Section with b, is
width of the flange in tension by

@ \/Z b, d
fy w
As.min = (39)

@ b,d SI

L2,
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Table 3.2 Minimum reinforcement ratio pp;,

ST units Inch - pound units
fe (MPa) P, /e (psi) Prin.
less than 34.5 1.4/f, less than 5000 200/f,
34.5 1510 5000 215/1,
41.3 1.6/f, 6000 230/f,
48.26 1.8/f, 7000 250/f,
< 1.95/1, 8000 270/f,
Example 3.6

Calculate the minimum area of steel A, i, for the cross-section, as shown
in Fig.3.10. Assume f, = 420 MPa, f, = 30 MPa and 4, = 700 mm”.

b = 250 mm 0.003 0.85 f,
9 ry ——y 03
/ 1= QT | P c
dj=450 mm -
°. o o] S
Figure 3.10
Solution.
Use Pmax. = 0.0237 (From Table 3.1)
1.4 14
Pmin. = Ty‘ = m =0.0033 (From Table 32)
700
= ———— =0.00622
# 250 (450)
Pmin. < P < Pmax 0O.K
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Minimum reinforcement from Eq. (3.8)

1.4 byd  1.4(250)(450)

Asmin. = i 750 = 375 mm?
As = 700 mm? > A pin = 375 mm? 0K
3.6 CRACK CONTROL

Cracking in the reinforced concrete is resulted from the temperature change,
flexural stress, the overload, the ratio of steel in the concrete and the
shrinkage. The concrete exposed to higher strain that means wider opening
crack, where using Grade 60 in the kind of steel. ACI code permitted an
opening crack width 0.013 and 0.016 in (0.4 and 0.32 mm) and the service
load steel stress is 0.60 f, that result from overload factor divided by flexure
strength reduction ¢ = 0.90. On the other hand, if the opening crack reached
the steel in the tension zone, the member of concrete will be in the range of
deterioration by corrosion. The ACI code preparation (ACI - 10.6.4) is
based on the Gergley - Lutz, and the equation for the concrete beam is:

w=CBf vd, A, (3.10.a)
and from Gergley-Lutz equation (3.27) is used a value of § = 1.2
S ETPE ) ——N——
~ . LR T e e B
o N, k=065
77/ y e o1
“T ) 1= AT e e
I. b .I |<—>’ A=2dcy

Figure 3.11

Where
w = maximum crack width at the tension fiber (mm or in).

£ = distance from out-side surface to neutral axis of crack equal
to 1.2 for beam and 1.3 for one-way slab.

C = experimental constant (0.076).
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e
Il

stress of service load in steel (MPa or ksi).

A, = effective area in concrete under tension zone divided by
number of bars 4,/m (mm? or in?) where m number of steel
bars.

d, = distance from the lower fiber to the center of first layer of bars.

zZ = FWB —f, ¥d, 4, from Eq. (3.10)
Exterior Z = = = 142.54 k/in ~ 145 k/in
T 0.076(1.2) ~
Interior Z = 0 175.43 k/in =~ 175 k/in
T 0.076(1.2) T ~
Z = f.9a A, (3.10.b)
and fs =06f (ksi) MPa

The ACI 10.6.4 limited Z is not more than 145 k/in (25.5 MN/m) for
exterior exposure, and for interior exposure Z is not more than 175 k/in
(30.5 MN/m), these limitations are corresponded with the maximum
opening of crack.

In the ACI-02, section 10.6.4 the Z factor requirements are replaced by
providing a condition for the spacing y of reinforcment closest to a surface
in tension, where y shall not exceed that given by:

540 6
=22 _95 0 < 13 B
s I
(3.11)
95000 252
_ P55 ¢ <300 SI
Js (fs )

where f; (ksi or MPa) is the reinforcement stress calculated at service load. It
is permitted to take f; as 60% of the yield strength.

For the usual case of beams with Grade 60 reinforcement and 1.5 inch
clear cover to main reinforcement, with f; = 36 ksi, the maximum bar
spacing y in Fig. 3.11is 11.25 inch.
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Example 3.7
Compute the crack control Z for exterior exposure. If f, = 40 ksi and
1.5 in. clear cover.

AR B 7] stirrup

15 — 9@ &I, _27in

b=14in

Figure 3.12

Solution.

N
Il

fs vd. A, = 0.6 (40) v/d. A,
d, = 1.5 (cover) +0.50 (stirrup) + %(1.41) #11 bar = 2.71in

4 = area of concrete (4,) _2 (2.7) 14 _ B 1D
number of bars (m) 3

fi = 0.6f,=0.6 (40) = 24 ksi

and

Z=f, ¥d 4, =24 2.7 (25.2) = 98 k/in < 145 k/in OK

Example 3.8
For the cross-section in Fig. 3.13 determine the crack control,
Jy = 400 MPa and the dimensions of the beam (see Fig. 3.13.)

¢ 10 stirrups

: 1 70 mm

50 mm & [0 7

Figure 3.13
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Solution.

Use Eq. (3.10.b) to solve Z by SI units
Z = f; v, A
d, = 50 mm (cover) + 10 mm stirrup + %(ZOmm) = 70 mm
A, = @@ = 10, 500 mm?
fi = 0.6f, =0.6 (400) = 240 MN/m?

and _—
Z = 240 /70 (10, 500) = 21, 660 % —21.66 MN/m
Z = 21.66 MN/m < 25.5 MN/m 0.K

3.7 SINGLY REINFORCED BEAMS

A rectangular section beam with tension steel only is one that has been
nominal strength taking into consideration, the reinforcement in the tension
area. The rectangular section is also called singly reinforced section and the
reinforced that place in the compression area, to increase the strength of the
cross-section in that area.

The ACI 10.2.5 neglected the tensile strength in axial and flexural
calculations. Thus the important dimensions in this section are depth d,
width b and area of steel A;. The depth is defined from the top surface in
cross-section to the center of the layer of steel in the tension zone, as shown
in Fig. 3.14 and the width is the whole width of cross-section.

The steel of area is an actual number required for cross - section. The
nominal strength M, can be expressed as follows.

M,=C (d—g) (3.12)
From equilibrium (Fig.3.14.):

C=T (3.13)

0.85 f, ba = A, f,

Where M, is the nominal moment, C is the compressive force acting on the
compression area and 7 is the tension force acting on the tension reinforcement.
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€ 0.85 f,

y
y
“I

A\
<—Q—>|
244

ey s|2 - L5 7 S
o S
(a) (b) © (@)
Cross-section Strain Stress Rectangular stress

Figure 3.14 Whitney compressive stress block.

F g

085/ b

(3.14)

Substitute 4; = p bd and multiplying both top and bottom by d

_ (pbd)fy(d) _ phd
“T0851) b(d) 085/ A15)

From moment equilibrium:

M, =4, f, (d—%) (3.16)
Or substituting Eq. (3.13) into Eq. (3.16) to give
M, =085 £, ba (d— g) (3.17)

When Eq. (3.15) substituted into Eq. (3.17) gives

_ o pfd _M
M, = 085 1, <0.85yf’c>b <d 2(0.85 f;))
d
— pfydb (d— ﬁ{}f;>
M, = pfy bd’ (1 - 1{)7f};> i

¢ M, > M, (3.19)
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Where M, is a factored moment (required flexural strength) and ¢ M, is
designed strength where ¢ = 0.9.

¢ M, = ¢pf, bd> (1 —%) (3.20)

Where p should be between the maximum and the minimum range of its value

Pmax > P Z Pmin

>

o wa L d

B 0.85 f,
l g‘\xﬁ\

[}
[

Example 3.9
Assuming that b = 12 in, d = 20 in, £, = 4000 psi and f, = 50000 psi.
Determine the nominal moment A,,.

b=121n 0.85/‘1
el e < : C=085f. ab
: 3#11_ E M,
E—— N S
Ay = 4.68 in? 1>
Figure 3.15
Solution.

From equilibrium equation:
r=c
Or A f, =085, ba
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4.68 (50) = 0.85(4) 12 a

468(50) ...
a = O—ém =573 1n

From Eq. (3.17)
e - c(-

= 0.85 (4) 12 (5.73) (20—%)

233.8 (17.13) = %6-1 = 333.8 ft.kips

Example 3.10

A rectangular beam has b = 350 mm, d = 550 mm, £, = 350 MPa,f’C =25

MPa and 4, = 2640 mm?. Calculate the nominal moment strength M,

Solution.

Reinforcement ratio is:

As 2640

P=2a= 30x 550 07

From Eq. (3.18) the nominal moment strength M, is

M, =pf,ba? (1-LL
Bl ( 1.7f2>

0.0137 (0.350) (350) (550)° (1 -

Il

1.7 (0.025)
450393.4
= 507670.6 (0.887) = — = = 450 KN.m
By using Eq. (3.13) the M, is:
2640 (0.350) = 0.85 (0.025) (350) a
2640 (0.350)
- — 1242
= 0.85 (0.025) (330) mm
M,=T (d— g) =924 (550 - 12;”) = 4?83(1)9 — 450 KN.m

0.0137 (0.350)

)
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3.8 DESIGN OF SINGLY REINFORCED BEAMS

There are two conditions of flexural failure in the design of singly reinforced
beams. First, the failure occurs through yielding of tension steel. Second, the
failure occurs on weakness of concrete compression zone. In section 3.3,
discuss and solve the problem to find the nominal moment strength A£,,, and
this section should reduce the M, by the strength factor ¢ = 0.90 to obtain
the design moment strength ¢ M,,.

The reinforcement ratio p must be not less than py;,. and not greater than
Pmax. to obtain the area of steel A; required for the section beam.

A rectangular beam in this design under singly reinforced must obtain the
depth 4 and width b, also keep in mind that area of steel 4; should be
between maximum area A .. and minimum area Agmin. as determined by
equation (3.8) from ACI code.

For the area steel, the reinforced ratio and the design strength, must be
checked during the design procedure. The following steps are required for
singly reinforcement design.

1 - Select value of singly reinforcement ratio p, but not less than ppi, and
greater than pp,y.

From Eq. (3.5).

_— 0.364 61 f,
max f:V
Where f, < 4ksi (30 MPa) B =085

4ksi<f, <8ksi

B = 0.85—0.05 (f, ksi — 4)

30 MPa < f, < 58 MPa

B1 = 0.85 — 0.007 (f, MPa — 30)

f. > 8 ksi (58 MPa) B =0.65

Pmax. 18 given in Table 3.1.
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2 - Calculate the minimum depth /i, by using Table 3.3.

3 - From Eq. (3.20) obtain the depth d, and width b of rectangular section.
After depth d has been established, add 2.5 in (65mm) from center of
the first layer of steel to the fiber of section to cover the steel from fire
or corrosion,

My=pf, bd? (1 2L
it (1-15)

4 - Compute the area of steel A; from the following equation. and it

should be between the maximum and the minimum area of steel.

A; = p bd

where p is computed from step 1.
5 - Check the required strength; M, must be equal to or less than the
design strength ¢ M,,.

¢ M, > M,

6 - Check the crack control if it is not more than 145 k/in (25.5 MN/m)
and 175 k/in (30.5 MN/m) for exterior exposure and interior exposure.

Z =1, 3/d. A, (3.10.b)

Table 3.3 Minimum thickness of beams or one-way slabs unless deflections are
computed (ACI code Table (9.5a)

Minimum Thickness, & (in)

Member Simply One End  Both Ends  Cantliver
Support Continous  Continous
lid ;
) Lae L/20 L/24 L/28 L/10
way slabs

Beams or ribbed

one-way slabs L/16 L/18.5 L/21 L/8

a) length L is in inchs (m). Value should be used normal-weight with f, = 60 ksi (414 MPa). A unit
weight for concrete in the rang 90 and 120 Ib/ft® (1500 - 2000 kg/m>) multiply the alue in the Table
by 1.65 - 0.005w (1.65 - 0.0003w) but not less than 1.09, the w is unit weight in Ib/ft> (kg/m>).

b) The value of £, other than 60 ksi should be multiplied by (0.4 + (£,,/100,000)), (0.4 + 6%) SI
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Example 3.11

Determine a rectangular beam size b, d and A; that has a dead load
moment Mp = 55 ft-kips and a live load moment My = 40 ft-kips. If
f = 4000 psi and f, = 50000 psi.

0.003 0.85 £,
A T >
'(‘_V"._ el d=7?
LA
) - i} v — T
- Strain
bh=7
fe———
Figure 3.16
Solution.

a - Solve for p, from Eq. (3.4)

_ 0.5 ﬂlfi( 87,000 )

e % 87,000 + £,
_0.85(0.85)4 [ 87 \ _
p="""50 <87 E3 50) = 0.03¢6
o 03645 Jo_0.364 (085) (4) _, oo
7, 50
200 2_00_ = 0.004 From Eq. (3.7)

Pmin =777 750 000
Select value of p between pmin. and pmax.
p=0.013

b - Compute required moment strength M,
M,=12Mp+ 1.6 M;, =1.2 (55) + 1.6 (40) = 130 ft - kips
M, =M,/¢ =130/0.9 = 144.4 ft - kips
From Eq. (3.20)

1444 (12) = pf, bd? (1 e 1@%)
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(0.013) 50 bd? (1 _ M)

1.7 (4)
1733 = 0.587 bd?
bd? = 2952 in®
Try b=12in
2
d= —?22 =1571in ~ 161n

¢ - The required area of steel is
Ay = p bd =0.013 (12) (16.0) = 2.50 in” (1612.6 mm?)
From Table 2.5, use 349 bars, 4; = 3 in? (4 ¢$25 mm, 4, = 1960 mm?)
d - Total depth h s
h=d+2.5in (cover) = 16.0 + 2.5 = 18.51in

e - Check for beam width and s = dj, or 1.0 in whichever is greater
b =2 (cover) + 2 (#4 bars stirrup) + > _d, + 2 (min. bar spacing)
=2(1.5) +2(0.5) + 3(1.128) + 2(1.128) = 9.7in < 12in ~ O.K

.‘2

de:251m

f - Check the crack control y from Eq. (3.11)

540 36
=—-25C.<12(—
Js <f>

C.=15in
Js

Il

0.6 f, = 0.6 (50) = 30 ksi
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540 36 :
= wme= & = " < — ) = 4
y =35 -25(15)=1425< 12 <30) 14.4 inch
1
Yactual = 5 [b —2 (cover) — 2 (#4 bar stirrups) — dp]
= % [12 — 2 (1.5) —2(0.5) — 1.128] = 3.436 < 14.25

0K

Example 3.12

A rectangular beam has b =350 mm, 2 = 650 mm and A, = 2450
mm? (5425mm). Using /., = 30 MPa, f, = 400 MPa, and modulus of
elasticity E; = 200,000 MPa. Determine the nominal moment strength
and check for the maximum area of steel.

b =350 mm 0.003 0.85 1,
T — ] T T g off
i < —C
¢ =
h=650 d E =
mm - - - -
25 mm \
v | 3 50 mm T
Figure 3.17
Solution
assume (3 = 0.85 f.=30MPa
Cmex _ & _ 0.003
d g.+¢&  0.003 4 0.004
0.003

Cmax ~— m Apottom layer

Cmax = 0.4286 d

Compute d for two layers of steel
d = h-50mm (cover) - 10mm (stirrup) - 25mm (diameter of bar)
-12.5 mm (a half clear distance between two layers)
= 650-50-10-25-12.5 = 552.5 mm
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Compute d for bottom layer
Apottom layer = 650 - 50 - 10-12.5 = 577.5 mm

12.5 mm
20 mm
— k 10 mm
oo £ oA 0T L 50 mm

Ccmax = 0.4286 x 577.5 = 247.5 mm

amax = 1 (¢) = 0.85 (247.5) = 210.4 mm
Cmax = Tmax

Cmax = 0.85f, bamax

0.85(0.03) (350) (210.4) = 1877 KN

1877 (1000)
Asmax = T

= 4694 mm?

As

2450 mm? < A max, = 4694 mm? 0K
The actual nominal moment strength M,

Tesl

A f, = 0.85f, ba

2450 (0.400) = 0.85 (0.03) (350) a

980
a  =co-=110mm
& 0.110
M, =T (d—§> — 980 (0.5525 _T> = 487.5 KN.m

3.9 DOUBLY REINFORCED BEAMS

Doubly reinforced beams are used for steel in the compression and tension zone
in order to help necessary moment in the compression. The steel in compression
also used to improve section ductility that reduces long-term deflection.
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The analysis of singly reinforced beam is the same as that for doubly
reinforced beam except d’, AIS and f Ic, where d’ is the distance from the
center of the top steel to the surface of extreme fiber and A; is an amount of
steel in the compression zone. The minimum thickness of overall depth must
be satisfied with Table 3.3 to define if the deflection is concerned or not.

0.003 0.85 f, i

N Id/ 5, aTg fd ,
o e s | — DT
N X “ v +— G, =0857, bu
N.A
'«y-‘ B d = - —
Y E oAy o
0000 -

-b = Es T'=A4a fi = Ta=Ag f,

Figure 3.18 Doubly reinforced beam.

The procedure of nominal strength for doubly reinforced beam is

M, = M, + M,

Where M, is nominal moment
Mi= 4 f, (d—3) Ay = A+ A
My = A, f, (d—d) Ao = A,

M, = C. (d—g) +C (d—d)

From equilibrium equation, the total tension force is equal to the compression
force.

T=C=C,+C; (3.21)
C.=085f, ba
Co =4 fy = A(f; —085f,) (3.22)

Where C. is the compression force in the concrete, and C; is the compression
force in the steel.

If C.+ Cs # T, the distance y was assumed small or large value, try to
increase or decrease the distance y until achieve the equilibrium equation
correctly (T = C,. + Cy).
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The initial assuming of y distance, using the ratio between x and a.

_ a
* B
Figure 3.18 illustrates the strain triangle to calculate.
—d
_b
£y T,
Els > &y 0.K

If
£, < gy The beam does not comply with ACI code

Check area steel A,
Max. A, = A, + pmax. bd
As,max. 2 As OK
If
As,max. < As ng

The stirrups are required to be used around the steel bars in beams.

Example 3.13

A cross - section beam has b = 10 in (254 mm), d = 16 in (406 mm),
A; = 4.68 in* (3019 mm?), 4, = 0.62 in® (400 mm?), f, = 3 ksi (20.69 MPa)
and f, = 50 ksi (344.7 MPa). Calculate the nominal moment.

d =25in 0.85 /. /
5 |41 e T < ta=as,
-® * S8l ' . T c=G+G
[, g =
4, =0.62in’|.- X > F C.=0857.b
o] d=16in
a
g4
2
V. v T
E 2 Ey

Figure 3.19
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Solution.
Assume fJS =f
From equilibrium equation
T=C=C,+C;
T = A f, = 4.68 (50) = 234 kips (1040 KN)
234 =C,+ C;
Cs = A, f, = 0.62 (50) = 31 kips (138 KN)
Determine the compression of concrete
C. =234 — 31 = 203 kips

Compute a
C. =085f,ba=255a
203 :
a = 2755 8 in. (200 mm)
Compute yx distance
a 8
=—=——=0941in. (240
X 3 " 083 9.4 1in. ( mm)
Determine the strain in compression steel
r i 0.4 — 9.5
= c=——— (0.003) = 0.0022
: X 5 94 ( )
5 50
=== — = ). 7
&= ~ 29000 ~ 0!
€ > & 0.K
st is equal to f; as assumed in the begining.
Compute M,
Mn - M1 + Mz

a 8\ 1
M, = C, (d—i) =203 (16—§>11—2_203 ft-k

M, = C; (d—d') =31 (16 -2.5) o = 3487 ft-k
¢ M, = ¢ (M), + M) =0.9 (203 + 34.87) = 214 fi-k

Or, compute M, by the following equation

¢ My=9 (C (d—d)+C. (d-3))
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3.10 DESIGN OF DOUBLY REINFORCED BEAMS

As mentioned previously, the section has compression and tension reinforced
known as doubly reinforced beam, when the section moment exceeds the
maximum moment that needs more steel bars in the compression zone.

The calculation procedure for design moment of cross-section of beam with
doubly reinforced is illustrated by a reinforcement yield or does not yield at
failure.

There are two types of solving the example for doubly reinforced beams.
Type (1), if the reinforcement yield.

Since the compression steel is strained at its yield point assume

g,>e, and g>g fo=5

! / % . .
Where ¢, f are the strain and stress in the compression steel.

I =G +G
C = 4.1,
T
4, = —
Iy
C. = 0.85f, ba
The obtain a value of a
_a
X5
Check to ensure the assumed value of 5;
, x—d
g =t (=)

If €, is greater than €y as assumed above

M, = C. (d—g) +Cy (d—d)
Type (2), if the reinforcement is not yield.
Assuming 5; > ¢, and f; =f

Since the procedure is the same in the reinforcement yield, until check its
strain to know if the strain is satisfied or unsatisfied.

IT'=C,+GC

Co=A4,/,

Co=T—-C;
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Check if 5; greater than ¢,

/ X—d/
€, = Ee
- (&)

less than €,

If £

s
That means compression steel is not yield with the value of x

Try greater value of x and obtain a, then repeat the calculations until
achieving the value of &, > ¢,.

Then, continue the calculations to obtain A;: Agand M,

Where A, is additional steel, and A'S is comperssion steel.

/

fs . 5; ES
To A = Cs and T, =C
g (08570 T
1> T,
Bot. Ap=— and Ay =—
* 5 iy
Ay = Ay +Ap

Then, M, is equal to:
a ’
M, =C, (d—§>+Cs(d—d)

o M, Multiply 0.90 by value of M,

[

Example 3.14

A doubly - reinforced concrete section has » = 400 mm, d = 600 mm,
fy =400 MPa, f’c =35 MPa, E; =200000 MPa and the nominal
moment required M, = 1400 KN.m. Calculate the A; and A;.

0.003 085 f, ,
3T, T T4

S e : B c

AAA

d = 600 mm - s

= X > T
Es
b = 400 mm
[ ——— P

Figure 3.20
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Solution.
Determine the maximum distance X,

_ 0003 (0.600)
Xmax — 0.003 + 0.004

ax

= 0.26 (260 mm)

Gmax = fix_ = 081(0.26) = 0.21 m (210 mm)

C. = 0.85f. ba = 0.85(0.035) 400 (210) = 2499 KN
; 260 — 50
& = g5 (0.003) =0.0024

Since 5; > €, = 0.002, compression steel yield and f° ; =fy
From singly reinforced beam M,

o -9 ol

210 1
2499 (600 _T> 1000 1237 KN.m

M, = My+My,
M, = M,— M, = 1400-1237 = 163.0 KN.m
My, =C,(d—4d)

My, 163 (1000)

i = = — 296 KN
required C; - ) 200 — 50 96 K
C =4, (f—-085f)
; Cy 296 2
4 = : - = 800
s (f,— 085/  (0.4—0.03) m

From Table 2.6, use 4 ¢ 16 mm bars, 4, = 804 mm>
T=C,+ Cs; = 2499 + 296 = 2795 KN

Compute for required A;

T 2795 ,
= =272 _6987.5
sS04 - 0987 mm

Use 10 ¢ 30 mm bars, 4, = 7070 mm?
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Example 3.15

A rectangular reinforced beam with £, = 3500 psi, £, = 50000 psi and
an architect allows the dimensions of beam are b =13 in, d =26 in
and maximum moment M, = 380 ft-k. Investigating if the tension
steel enough or add steel in the compression zone. If so calculate for
A, and 4.

b=13in ec = 0.003 0.85f,
T T . T T = T4 C
Ry d =25 , * ~— G
245 f-A"‘I " — ¢ al: —g
._ ny‘. - X
d=26in
.’ .V “As‘
OHY | e . 2 L .7
- Ey
Figure 3.21

Solution. Design tension reinforcement only
From Eq. (3.2) the pp is:

 0.85(3.5)085 [/ 87 \
Fe= 50 (87 S 50> =il

For deflection, the ACI code limited 0.35 p;
p =0.35(0.032) =0.011

Area steel with tension only is:
A; = p bd=0.011 (26 x 13) = 3.8 in’
T=A4,f,=38(50)=190k
From equilibrium
T =C
190 = 0.85(3.5)13a

a = ﬂ =5in
38.67
X = i = 5.88 in
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M,

¢ M,

I

I

T (d—f) — 190 (26—§> L smk

2 2 12
0.90 (372) = 334.8 ft.k < M, = 380 ft.k

ng

The section needs more strength, that means, a design section as a

compression steel.

Check for strain 5; from the triangular, as shown in Fig. 3.21.

use

€y

= 2
X
_ € (x —2.5) _ 0.003 (5.88 —2.5) — 0.0017245
X 5.88
Iy 50
= i e == {]}, 1 2
B = 50000 = 00017241

s; > g, compression steel yield

M, =380 —3348 =45.2ft. k

Leverarm = 26-2.5 = 23.51in

T (arm) = M
_452(12)
Ty =—5 =23k
T2 == Cs
T, 23 . 3

Ap=2=""=0.

2 7, =50 0.46 in
As - Asl +As2
Ay = 3.840.46 = 4.26in”
C; =23k
e = 0.0017245
£, = (0.0017245) (29 000) = 50 ksi
Cs = (f,—0.851) 4,

y 23
A, = = 0.49 in’

s~ B0=085 B3y P

2#5 bars, A/s = .62 in® (compression)

and 6#8 bars, A, = 4.74 in® (tension)
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3.11 ANALYSIS OF FLANGED SECTIONS

The T, I and L - sections are used as members of reinforced concrete structures
that means the beam and floor slab can act as one unit in the structure. As a
result, the top portion of the flange is called T-section, and the portion under
the flange or T-shape is called the stem as shown in Fig. 3.22

< be »> < be — Nb—ebl
[ E Y | SRR | ERTNIN SN R aF ey R e
h ’ stem or web —> 7 le—b .
Nk | ——— ! - I FE
l—» | — t—
by be by
(@) (b) (©

Figure 3.22 Flange section; (a) T-section, (b) I-section, (c) L-section.

The flange of T-beam has been produced by the slab thickness z; and the b,
is the width of the stem or web that joined with T-section.

The flange of T-beam is produced from precast concrete, and used as a
member of structure not only to carry a large compression force, but also to
produce a large distance of the internal position that result of compression
stresses closed to compression surface.

A flange is usually placed to carry enough compression to avoid brittle
failure in compression zone that confirmed by a neutral axis and the depth of
T-beam should be determined by a thickness of slab.

Figure 3.23a shows the locations of neutral axis that means when the
neutral axis within flange thickness the section may be analyzed as a
rectangular beam. If the neutral axis position is outside the flange as shown
in Fig. 3.23b. Analysis as a different method.

b, b

W TN T

: , | stem or web ." | stem or web
- [

by by

(a) (b)

Figure 3.23 Neutral axis locations.
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Effective Width b,

The ACI code limits the effective width of T-section and L-section as the
smallest of the following.

a) For T-section
b = % (beam span L)
be=b,+2(8) ¢
b, = from center to the next center of beams (/)

Where £, is the slab thickness and L is the length of the beam

Rectangular stress

Figure 3.24 Stress distribution for T - section.

b) For L - section
The effective width b, should be taken as the smallest of the following.

1
b, = b, + - (beam span L)

b, =b,, + 61
b.=5b -}-lL
e — U ) clear

Where ¢ is the slab thickness and L, is the clear distance between interior
face of two beams
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Figure 3.25 (a) L - section, (b) T - section.

The analysis of T-section, when the position of neutral axis occurs in two
cases: (1) the distance is equal to or within the flange; and (2) the neutral axis
is outside the flange.

Case 1: The neutral axis is equal to or less than .

When the neutral axis is width #, the section may be analyzed as singly
reinforced beam and the A, is equal to or less than:

4, <085 cbet (3.23)
5
A f,=085f, b, t (3.24)

Where b, is the effective width of T-section which replaced by b in a
rectangular section.

C=085f. b, a (3.25)
T=Af,
v be . e, 0857,

w§ VTITTTTTITAIIANA Y X et I +—C
@ — a—x
.:- v a v L T = Asf_v

€ > &y
[e—>]
bw

Figure 3.26 Neutral axis within the flange
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Case 2: The neutral axis outside the flange.

Since the neutral axis is outside the flange, the section may be divided into
two internal moments My and M, with My resulting from the moment of the

flange and M,, from the moment of the rectangular beam.

My = 085 1, 4y (d- %) (3.27)
/ a
=0. d—= 3.2
M, = 0.85, 4, (d 2) (3.28)
From Eq. (3.27) and (3.28), the Eq. (3.26) becomes
M, =085, Ay (d~2) +0385 f, Ay(d-3) (3.29)
d 2 2
Where
A, =bya (3.30)
Ar=1t; (b, — by) (3.31)
1 1
el S be
_I4—H e < I - |
SR R ] SRR
= A= —NA
% o
and
_T- (o.sslfc Ap) (3.32)
0.85 /. by,
Cr=0.851, (47)
e—— be 4 0.85 /. 0.85 /.
_— - 2 Gy =085 1, by
AT AT ET "
s d_%s Mf/ d—% M,
'..' }c -. AN Tf = Asffy Y, T, = Aswfy
b,

Figure 3.27 Distribution force.
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3.12 DESIGN OF FLANGED SECTIONS

The design purposes for T-beam as a part of continuous beams will depend
on the dimensions of the stem and flange to resist the positive moment that
becomes flange in compression or resists the negative moment where the
flange will not be effected. The following examples will give a clear evidence
for dealing with both cases of T-section.

Example 3.16

The section shown in Fig. 3.28 which is required to design the nominal
moment strength M, of the floor system, consists of 4 in, effective
depth d = 22 in. and the beam has a web width 12 in. Use f' ; = 3000
psi and f;, = 60000 psi. Check cracks when Z < 145 kips/in.

b, =23in 0.85f,
oo L [T § emed (g ot
As = 4.0 in? 416;&9 ” o Y. T=4,f,
Figure 3.28

Solution. Calculate the steel tension as a rectangular section.

Assume a = t;, =4in.
C =T
C =085f, ba

0.85(3)23 (4) = 234.6k

(Tor C) 2346
5, 60
Use 4#9 bars, 4, = 4.0 in®

A, = =3.911n?

T =f, A; = 60 (4.0) = 240k

240

OIS R

a

O0.K
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As a rectangular section

M, =240 <22 - %)

12

= =400 ft-k

Check the crack control Z < 145 kips/in
.}(»; V3 dL‘ AC

2.5 in (for one layer)

/s

I

Il

2425 4 (# of bars)

by

12
5xZ=15in2

0.6 (60) = 36 ksi

36 v/2.5 x 15 = 120.5 kips/in < 145 kips/in 0K

Example 3.17
The T-beam section as shown in Fig. 3.29 has b,, = 300 mm, ¢, = 95 mm
of slab supported by 7m span with 2.5m center to center, d = 500 mm,
dead load moment is 85 KN.m, live load moment is 170 KN.m, f /c = 33
MPa and f, = 400 MPa. Determine the required area of steel 4.

b — 1750 mm 0.85f,
r=95mm fE o m Al 3 e
W U A , : a=17.64
- mm 7. 2
6422 mm e lie| e E
P v F=defy
b, = 300 mm
Figure 3.29

Solution. From case 1 the smallest of the effective width is

£_7000 mm
4 4
1.2D+16 L

= 1750 mm

1.2 (85) + 1.6 (170) = 374 KN.m
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M,
M, =—
®
Where ¢ =09
M, = % =415.6 KN.m
a
M, =T (d—§>
Assume a = t, =95 mm
M, =T (500—%)
2
415.6 415.6
(500 B %) (0.5 —0.0475)
T 918.45 5
Ay =—=___—"—=27
7 04 96 mm

T is approximate because the value of a is assumed.
=
918.45 KN = A4, (0.85) (0.035)
A, = 30872 mm®

Where A4, is the area of concrete between the effective width b, and the
distance of a

A, = boa

30872
1750 =17.64 mm

Using the acual value of a to recalculate for M, and A4;

e -1 (o-

T (0.5 B 0.012764>

T = 846 KN

415.6




3.12 Design of Flanged Sections 61

) 4
required A; =;; ij— 2115 mm?
From Table 2.6, use 6 ¢ 22 mm
A; = 2280 mm?*

Example 3.18

The floor in Fig.3.30 consists of 5 in. thickness of slab, 4, = 10.16 in?,
f’c = 3000 psi, f, = 40000 psi, b, = 12 in. and b, = 30 in. What is the
nominal moment strength?

5in

il

=181t 5 L=18ft

A

x
\
r

b, =301in 0.003

GO = < G =085f, 1; (b —bv)

'}_5 - , a=251nI <« Aq—_C(:Cf-f‘Cw

s =21n Y | 3T C,=085/.ba
cld=20in e PR a

S i d —=

é - 2

¥ "=T:Asfv

b, = 12m

Figure 3.30

Solution. Calculate for a distance a
0.85f, A. = 4 f,

_10.16 (40)
‘7 0.85(3)

b, =30in

[ 2% § 713 ty=35in

=12in

= 160 in®
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Ap= (30 —12) t, = 18 (5) = 90 in®
9in 9in

o i =

Ay = A, — Ar =160 — 90 = 70 in®
ab,=A4, b, =12in

A, a="
a=D_ss3in _[

12
Cr=0.85f. Ar = 0.85(3) (90) = 229.5 kips

C,=085f, 4, = 0.85(3) 70 = 178.5 kips

Using Eq. (3.29) to solve for M,

=G a-Dve (-

Il

229.5 (20 - —j-) +178.5 (20 — 2.915)

7066.25

— 589 ft-
S = 589 fi-k

= 4016.25 + 3050 =

Example 3.19

An I-section beam has f, = 4000 psi, f, = 60000 psi, & = 24 in. and
other details shown in Fig 3.31. Determine the maximum area A max.
and balanced area Ay, according to ACI code.

b=20in ge = 0.003 0.85 f,
( A X 2k [« /
i * =0. A,
7 4in A / : «—C=085f,
A <
A, 6.8 in Xb a=10.8in | |
; 4 v i
16in |
< »| d=21.5in
.:’-}Air;
T ‘. Es 0 y ...‘ . 0
-A'.“,-4in‘; e @4 =54in’| ¥+ L—» L»T=4f,
3 AR T TN & =&y
(a) (b) ©

Figure 3.31 I - section beam”.
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_ (87,000 \
X = \87,000 +7,
87

Bi x, = 0.85 (12.7) = 10.8in

Q
l

Determine the balanced area of steel Ay,

Where

C. =085f1,4,

A = A1+ A4 (as shown in Fig.3.31)
A, =20x4+68x4=1072in°
C. = 0.85(4)107.2 = 364.5 kips
C. =T=Adxuf,
364.
Ay = % = 6.07 in?
X o D8 d=0.4286 d

max  0.003 + 0.004
= (0.4286) (21.5) = 9.21in

Gmax = B x__=085(9.21) =7.83in
C. =085f, A,

A, =41+ A4

20 x 4 + 3.83 x 4 = 95.32 in?

Il

C. 0.85 (4) (95.32) =324 kips

e =T= As.maxfy

324 .
Agmax = E =54 1112
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PROBLEMS
3.1 A rectangular cross - section of the beam 13 in. wide by 20 in. deep as

shown in Fig. 3.1. Usech = 4 ksi, f, = 50 ksi and the beam has 14 ft
length. Find the cracking moment M, and concentrated load P.

» g
. - .
¥ ¢ o

l: .

N - L h=20in
L=14ft g T o # l
b=13in
Figure P3.1

3.2 A rectangular cross-section of beam 12 in. wide by 18 in. deep as
illustrated in Fig.P3.2. If f, = 50 ksi, f 'c = 3.5 ksi and the beam has

12 ft length. Find the required value of cracking moment M, and
uniform load w,.

w = I
v v 3 K] v Ta T
/N S PRTE
v L=12ft % ST
le > 5 g B 3 '» - l
b=121in
Figure P3.2

33 Recalculate Prob.3.1 by using SI units where f'c =27.5 MPa,
Jy =350 MPa, L =4.25m, b = 330 mm and /# = 500 mm.

3.4  Recalculate Prob. 3.2 by using SI units where £, = 25 MPa, f, = 280
MPa, L = 3.6 m, b = 300 mm and /4 = 460 mm.

3.5 Check the minimum area of steel A;min. and the minimum reinforcement
ratio pmin. for a rectangular cross-section of the beam as shown in
Fig.P3.5. Use f, = 40 ksi (280 MPa) andfc =4 ksi (27.5 MPa).
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e e = 0.003

»!

=1
>
1

g

® O 0 ® e

|l
<

4#9 bars
Ay = 4.0in?

Figure P3.5

A rectangular beam has 14 in (350 mm) wide and 26 in (660 mm)
deep (see Fig P3.6). If f, = 50 ksi (350 MPa), f'c =4 ksi (27.5 MPa)
and area of steel A4, is equal to 5.0 in? (3225 mm?). Determine the
maximum area of steel A max. and reinforcement ratio pmax.

e, = 0.003

Y e =

e A“ :V €

h=26"| |- 00 d=23"

- 5#'9,bars'~

y|oo0 00 *
b=14" |
Figure P3.6

Check the minimum reinforcement ratio ppi,. and the minimum area of
steel A;min. for the cross-section of the beam, as illustrated in Fig.P3.7. Use
fy =45ksi (310 MPa),f'c = 3.5 ksi (25 MPa) and 4, = 3.0 in* (1935 mm?).

b=10" (250 mm)
e

4

gl

Rew ¥y

h = 18" (450 mm) o o d=15.5" (390 mm)

I3

' -3§#}9ba'rsA.4
® o -

[
<

Figure P3.7
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38 Check the crack control according to ACI code for the cross-section
under exterior exposure (see Fig. P3.8). If f ; = 4 ksi (27.5 MPa) and
Jy = 60 ksi (420 MPa). Use # 3 stirrups and clear cover 1.5 in.

b=16" (400 mm)
]

@ 5

Iy
g2

E wm

h = 28" (635 mm)
] : P 3#10.

#3 stirrups

Figure P3.8

39 Check the crack control of the beam under exterior exposure. Use 10#8
bars, # 4 stirrups, 1.5 in. clear cover and the clear spacing between two
layersis 1.0 in, f;, = 60 ksi andec = 3.5 ksi.

h=26 : e e #4 stirrups

RN

00

—1

10 # 8 bars
Figure P3.9

3.10 Compute the nominal moment M, of a rectangular cross-section for
each case as shown below.

Case f; (ksi) f. (ksi) b (in) d (in) Bars
1 40 3 10 17 3#8
2 50 4 2 19 3#9
3 60 5 14 2 449
4 60 4 12 18 447
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Problems

3.11

each case by using SI units.

Case
1

2
3
4

f, (MPa)
280

350
420
420

f. (MPa)
20

21.5
35
215

b (mm)
250
300
350
300

d (mm)
430
480
560
450

Compute the nominal moment M, of a rectangular cross-section for

Bars
3620 mm

4 ¢ 20 mm
4 $22 mm
4418 mm

3.12 Determine the required area of steel for a rectangular cross-section of
a simply supported beam to carry uniformly distributed live and dead
loads. Select reinforcement ratio between maximum and minimum
ratio for each case. Check for nominal strength.

b(in) d(in)

Case
1

2
3
4

10

12

14
16

17
19
22
25

£, (ksi)
45

50
60
60

ch (ksi)
3

4
5
5

wp (k/ft) wg (k/ft) L
1.0 1.0 12'
1.25 1.2 14
1.5 1.3 16
2.0 1.5 18’

b (mm) d (mm) f, (MPa) ch (MPa) wp (KN/m) wy (KN/m) L (m)

@0 9 & W

3.13

250
300
350
400

430
480
560
650

280
350
420
420

20
27.5
35
35

10
15
20
23

10
12
15
20

3.6
4
5
6

Determine the required size b, d and area of steel A, for a rectangular

cross-section of a simply supported beam. Check the beam width and
assume p = 0.015 for each case as following:

Case
1

2
3
4

wp (k/ft)
1.75

2.0
225
1.5

wi, (k/ft)
1.5
i
2
175

L (ft)
16
18
20
2

[y (ksi)

60
50
60
50

£ (ksi)
3

4
4.5
5
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wp (KN/m)  w; (KN/m) L (m) fy (MPa) jjc (MPa)
5 15 10 4 350 20
6 20 15 420 271.5
7 25 22 6 350 35
8 30 26 7 420 35
B B 0.003 0.85f,
A P A : — C
h o L d=7
e X
% 3 WL b
bi=7
L —
Figure P3.13

3.14 Determine the nominal moment A, for a rectangular cross-section of
the beam having both tension and compression reinforcement where
A = 5.08 in? (3276 mm?), 4, = 0.88 in? (567 mm?), £, = 45 ksi (310

MPa) and f,, = 3.5 ksi (25 MPa).

d' =2.5" (60 mm

4

b= 121in (300

)

A

d=18"
(450 mm)

A 4

mm)

€

|

851

«—C;

Y24 o

c

Figure P3.14
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3.15

3.16

3.17

3.18

3.19

Determine the nominal moment strength M,,. If A, = 5.0 in? (3225
mm?), 4, = 1.32 in? (850 mm?), b = 14 in (350 mm), d = 20 in (500
mm)f’c = 4 ksi (27.5 MPa) and f;, = 50 ksi (350 MPa).

What is the area of steel for tension and compression zone as shown in
Fig.P3.16. If £, = 50 ksi (350 MPa), ¢, = 0.003,f’c =4 ksi (27.5 MPa)
and the nominal moment strength M,, = 600 ft-kips (813 KN.m).

d = 18" (460 mm)

b=10" (260 mm)
o

Figure P3.16

Recalculate the requirements of Prob. 3.16 and check if the compression
reinforcement yield, f, = 60 ksi (420 MPa) and M, = 330 ft- kips (447
KN.m).

In Prob.3.16 calculate the arca of steel for tension and compression
zone as illustrated in Fig.P3.16. Use f, =55 ksi (380 MPa) and
M, = 350 ft-kips (474 KN.m).

For a rectangular beam, investigate if the tension reinforcement is
adequate or add reinforcement in compression zone. If so, determine
A, and A,. Use f, = 50 ksi (350 MPa), e, = 0.003, f, = 4.5 ksi (30
MPa) and M, =290 ft-kips (393 KN.m). For deflection, the ACI
code limits 0.35 pp.

| d= 18" (460 mm)

b = 12" (300 mm)
e

Figure P3.19
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Problems

3.20

3.21

3.22

For the T-beam section shown in Fig.P3.20 it is required to determine
the nominal moment strength M, and check the crack control of the
T-beam subject to the exterior exposure. Use f;, = 60 ksi (420 MPa),
£ = 3.5ksi (25 MPa) and A, = 5.08 in*.

) b, = 30" (760 mm) -
- ]} w=6(150mm)
] 20" (500 mm)

—p|
b, = 12" (300 mm)

Figure P3.20

Redesign Prob.3.20 for area of steel and nominal moment M, where
be =27" (690 mm), z, = 5" (125 mm), f, = 3 ksi (20 MPa) and f, = 50
ksi (350 MPa).

The T-beam section shown in Fig.P3.22 has b,, = 14 in (350 mm),
t; = 51n (127 mm) of slab is supported by 10 ft (3.2 m) span with 6 ft
(1.8 m) center - to - center of the beam and M, = 450 ft-kips (610
KN-m). Use f, =50 ksi (350 MPa) and f, =3 ksi (20 MPa).
Determine the following.

(1) the effective width &,

(2) area of steel A;

(3) Check the nominal moment strength M,

(4) Check the crack control Z

ry
4
 §
o
Il
UI\

-

—
"

b, =14

Figure P3.22
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3.23

3.24

3.25

Redesign Prob.3.22 where M, = 350 ft-kips (474 KN.m), ¢, = 5.5 in.
(140 mm), L =9 ft (3 m) span length with 5 ft (1.6 m) center - to -
center of the beam and b,, = 15 in (400 mm).

Redisgn Prob.3.22, if M, =490 ft-kips (664 KN.m), #, =6 in.
(150 mm) L = 12 ft (3.6 m) span length with 6.5 ft (2 m) center - to -
center of the beam and b,, = 14 in (360 mm).

Compute area of steel and the nominal moment strength M, for
T — beam section as illustrated in Fig.P3.25. If f, = 60 ksi (420 MPa),
f /c = 3 ksi (20 MPa) and assume a = 6 in.

lts NL&
by

b, =24 in (610 mm)

“oeo 00 |d 4 =65in(165mm)

S

[

525 23 in (580 mm)

P—
b, = 12 in (300 mm)

Figure P3.25
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5.1 INTRODUCTION

The shear strength is effected by tension and axial compression and the
beam of concrete is much stronger in compression than in tension. As a
result, most of failures happened namely shear failure, but the stresses
created by moment are much greater than created by shear force.

The diagonal tension is effected to the shear failure from nominal flexural
stress and shear stress; therefore, diagonal tension stress is more concerned
than shear stress. When the moment in the beam exceeds the tensile stress,
the crack will be developed at 45° that will split the concrete beam at the
critical point.

5.2 DTAGONAL TENSION
| | Vav.
vV YV VvV VY ¥V Vv vV ¥ ¥ —
300 N.A 14 B}
_/ = = t T Vinax.
S8 S e
A
2 1
i
VX e M
1 El 0 2
2 1 1 2
i £
- A e
f‘Jr {,—’ S — -~ Sy @)
1 - p; I 2
2 . 1 C\ 1 2 / &
fe = X |1 — Je 3)
1 - 2 1 2

Figure 5.1 development and diagonal: (a) simply supported beam,
(1) Stress at 1, (2) Stress at 2, (3) Stress at 3.
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Fig.5.1a shows the diagonal cracks close to the left support and goes up with
45°, Fig.5.1 (1) shows the diagonal tension on linel-1 which decreased and
the line 2-2 is increased: Fig.5.1 (2) tolerates a tension stress and Fig.5.1 (3)
increases diagonal tension on line 1-1 and decreases diagonal compression
on line 2-2. The tensile stress f; in elements (1) is equal to shear v and effect
at 45°,

Figure 5.1b shows shear stress on cross-section and relates between maximum
shear stress and average stress. The shear stress is:

V M,
— 5.1
v="% (5.1)
Where
b = the width of cross-section where shear stress is required.
I, = moment of inertia about x -axis.
V' = shear force at section required.
M, = moment of area over the required level.
v = shear stress at required section.
The ACI Code is used shear stress by dividing V by b,,d simply by:
vV
= S
iy (5.2)

Where b,, is width of a rectangular section.

Fig.5.1 (2) illustrates the element two that located below neutral axis, and
tensile stress f combines with shear stress, the tensile stress is:

2
and their maximum slope tension is:
tan2 ¥ = 279
Where
f = principal tensile stress

¥ = angle of f
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5.3 BEAM BEHAVIOR

The primary concern with beam behavior under loading, that divides the
beam for two parts. The first part, which may take an upper place of neutral
axis of the beam that exposed to compression, and the second part takes
lower place of neutral axis of the beam to carry tension.

It is possible to know that the opening cracks will happen in the lower
part of the beam (Fig.5.2).

- Compression’ - -

" .Tension | - v

Figure 5.2 Tension and compression zone.

Fig.5.2 illustrates the flexural - shear cracks occurred between load and
support that caused by load and also caused along diagonal crack during the
beam loaded, but the beam can carry extra load in region of uncracked
concrete.

d ; .“.',?.'Diagoﬁalli..‘_".'(Vc
// e P e Crack 2V,
v ‘.-“_ Q / — T

- v ' ' - ' '£de
fe— T

(@) (®)

Figure 5.3 Diagonal tension cracks.

Fig.5.3b illustrates a free-body diagram from the main diagonal crack and
internal force that created from loaded. This load should be equal to shear
resistance V. that created from compression part, and dowel force Vy
created from bars in tension part to dowel action. The V, is aggregate
interlock. Furthermore, shear force between section x is balanced by dowel
action V,, Aggregate interlock ¥, and shear resistance.
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The beam failures that may occur, depend on the relation between a and b as
following types;

a - Diagonal tension failure is occurred far from support and applied load.
This failure is happened when the distance a is greater than 4d
(Fig.5.4).

/ ; Id 25<a/d<6
J oy 6

Figure 5.4 Diagonal failure.

b - Compression failure is a/d greater than or equal to 1 and smaller than
or equal 2.5. That occurs when the distance of a is smaller than 4 d. The
diagonal crack will extend until it reaches the load. Before that, the
beam remains carrying more load point until the crushing failure will
occur. This failure is known as shear-compression failure (Fig.5.5).

1<a/d<25

Load

/ 'Id

~af2
a

Figure 5.5 Compression failure.

¢ - Figure 5.6 shows diagonal crack between the support and load. The
a/d is smaller than or equal to 1. That failure happens with deep beam,
when the bar splitting before the shear compression happens and it is
known as shear tension failure (Fig.5.6).

a/d<1
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Load

}

/ Ild

e

a

Figure 5.6 Shear-tension failure.

d - This failure is called flexure failure and the a/d is greater than 6. That
will happen when the span of the beam is long and the depth is small.
When the vertical crack reaches at the zone of a maximum moment
and the crack will be between support of beam and a maximum
moment.

6 <ald

5.4 SHEAR STRENGTH WITHOUT STIRRUPS

It is assumed that the shear failure is happened in reinforced concrete beam
with no shear reinforcement, only at the moment when the beam loading to
the shear failure happened; but to achieve enough warning before the beam
crushing, the minimum shear reinforcement is required. The shear strength
in the beam occurs when the load creates the diagonal crack as mentioned
early. The ACI code uses the cross-section area to express the nominal shear
stress as:

(5.4)

Where b,, is the width of beam web, V, the nominal shear strength and v is
the shear stress.

The ACI code defines equations for shear strength effected to cross-section
of beam that under flexure and shear by:

7, <1.9 V42500 p, VVJ) bud <35 \[fobud  (5.5)
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’ V.d\ byd ’
7y = <\/;7+ 120 p, Mj) <03 Jiibd ST (56)

For Ed should be taken less than 1.0

u

Where
M, = factored moment at cross-section

V, = factored shear force at cross-section

I

d = depth of section
b,, = effective web width of beam

A . .
pw = —- (reinforcement ratio)
by,d

If the Eq. (5.5) is exceed 3.5 \/f byd and K}d

u

is not smaller than 1.0, the

following equations will be used:

Ve=2,/f. bud inch-pound (5.7)
Ve=0.166 /. byd SI (5.8)

Rajaopalan and Fergusan® suggest to use the following equations, when the
reinforcement ratio p,, is less than 0.012.

Ve=(08+100 ) \/f. bud <2 /f. bod Tnch-pound (5.9)
Ve=(007+83 p) /. bud <0166 \[f.byd ST (5.10)

If the beam is exposed to axial compression force, the shear strength 7, is
given by:

N,
" i I 5.11
V=12 (1 +2000 Ag) e bwd (3.11)
If the beam is exposed to axial tension force, V, is given by:
N,
S 1 2 sbf b 5.12
V. 2(+500Ag> [ bud (5.12)

The value of % should be taken in psi
g
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If the cross-section of beam is in axial compression, the ACI 11.3.2.2 is
permitted to substitute Eq. (5.5) for M, by M,, when the value of Kl—“j is greater
than 1.0, and value of V. in Eq. (5.13) is not greater than V. in Eq.(5.15).

F = (1 9 /f’ + 2500 p, —d> byd (5.13)

M,, = M, — N, (4/“8_ 4 (5.14)

[ Nd
V,=3.54/f by ’ 5.15
3.5 \/f. bud L+ 50 o (5.15)

N, = axial force, pound

Where

[

A, = grossarea, in?,

J

f. = compression strength
h = whole depth of beam
Lightweight concrete

All the equations above use the value of shear strength ¥, for normal weight
concrete, but in this section, the shear strength is used for lightweight
concrete, the \/f is replaced by £% Lo and value of ¢ f‘“ should be less than f or
multiplied Eq. (5.5) by 0.75 to become

i Vud
7, — {0.75 (19 \/f2) +2500 p, "

V—{075\/7-|-120pn Vud) bud

For “Sand-lightweight” concrete is multiplied both ends of equations by
0.85 to become:

byd < 0.75 (3.5) \/f byd (5.16)

SI (5.17)

V_[085 (1.9 \/f2) +2500 p, Ld}bd<085 (3.5) \/f. bud (5.18)

Vd| byd
= (1, ! | —— & 1, : " by 5.1
[O85\/fc—|—120p Md] g <0.85(0.3) y/f. byd  SI (5.19)

n
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Example 5.1

For

fy:

and

a simply supported beam shown in Fig. 5.7 has f lc = 3000 psi,
50,000 psi and A, =2 in?, with uniform dead load of 4 kips/ft
live load of 6.24 kips/ft. Calculate the shear strength V', where

M, = 250 ft-kips.

b, =12in? 4 <—| w, = 14.78 k/ft

P o] T P T T T T T A
- [d=18in. N TR R
249 zay

- . v t 16 ft (clear span) |
A=’ R, = 11824k

Figure 5.7

Solution.

a -

Determine V/,

w, = 1.2w;+ 1.6 w

1.2 (4) + 1.6 (6.24) = 14.78 kips/ft

Calculate V), at the support when d = 18 in.

14.78 x 16 18
Vu = ————— - . ey = v i
> 14.78 (12> 96.07 kips

From Eq. (5.5) the value of V. is:

7, = (1.9 Ve +2500 py E/) byd

u

&
&}

oy = L = =0.0092

V.d 9607 (18)

3, = 250 (12 = 576 < 10 0K
12 x 18
Ve = [1.9 v/3000 +2500 (0.0092) (0.576)] — oo

25.34 kips < 3.5 \/f". bud
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3.5 v/3000 (12 x 18) IJW = 41.4 kips

V. = 25.34 kips < 41.4 kips O0.K

b - Caculate V. by using SI units, when f;=21 MPa (3 ksi),
Jfy =344.7 MPa (50 ksi), b,, = 304.8 mm (12 in) and d = 457.2
mm (18 in).

From Eq. (5.8) V. is:
Ve = 0166 /f. bud=0.166 V2T (304.8 x 457.2)
= 106000 N = 106.0 KN (23.83 kips)

¢ - Determine V, for "Sand-lightweight" concrete by using Eq. (5.18)

f Vud
v, = [0.85 (19 \/[f.) +2500 p, V} byd
— 22 kips < 35.2 kips 0K
Example 5.2

A rectangular beam in Example 5.1 has, 4, = 4.0 in® and the beam
subject to axial tension force with N; = —5 kips and N; = —8.6 kips.
Determine shear strength V.

Solution.
a - Determine factored loads for tension and V..

N,=12(-5)+1.6 (—8.6) = —19.76 kips
When the beam has tension force use Eq. (5.12)

Ny ;
Ve=2 (1+500 Ag) V7% bud

(—19,760) 1 |
“ 2\t msx — =196k
< T 500 Qo5 x 12y V3000 (12x18) 3555 = 1986 kips

b - Compute shear strength V. by using N, =19.76 kips in
compression force, From Eq. (5.11), the V, is:

Ny /
e =211 w
P < +2000Ag> Ve bud

2 (14 19760
2000 (12 x 20.5)

1
V. — = 2461 ki
> 3000 (12 x 18) 755 = 2461 kips
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5.5 SHEAR STRENGTH WITH STIRRUPS

If the shear force is greater than the shear strength of concrete, the stirrups
are necessary to cover the area of steel around all the bars in cross-section,
as shown in Fig.5.8: That will prevent diagonal cracks to occur or to growth.
The most common types of bars size are no. 3 and no.4 (¢ 8 and ¢ 10 mm),
and the common spacing of stirrups is 4 in (100 mm), but at the both ends of
the beam, the distance will be closer, because its critical section exists at %d
of the beam.

U-shape
> 4 stirrup Close stirrup

r— — ., 1 _
(@) (b) (©
Section A-A

Figure 5.8 Types of stirrups.

Fig.5.8b and c¢ show two types of stirrups. (1) U-shape is around tension
bars and hooked with bars at compression zone. (2) Closed stirrup is around
all bars and hooked at around one of the bar that located at compression
zone.

ACI code specifies design shear ¢ V¥, must be greater than or equal to shear
force V, that is:

Va2V, (5.20)

Where

V, = nominal shear strength of the cross section.

¢ = reduction factor 0.75

If the shear reinforcement is required, the nominal shear strength becomes:

Ve=V,+V, (5.21)
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Where
V. = shear strength of the concrete

Vs

shear reinforcement

Substituted Eq. (5.21) into Eq. (5.20) to become:
¢ (Vet Vi) 2V, (5.22)

If the gravity load is used for shear strength ¥, the Eq. (5.21) is determined by:
Va=12V;+1.6V; (5.23)

5.6 INCLINED AND VERTICAL STIRRUPS

Inclined stirrups

The inclined stirrups are assumed that the diagonal crack passes through the
vertical stirrups from the tension zone to the top of compression zone in the
45° (Fig.5.9). As a result, the diagonal crack is passed through two legs of
stirrups. That means, the area of the stirrups A4, includes two leg for U-

shaped or closed stirrup.
g .- - ‘

V.
\\\
h&

3
|

7ﬁ/—‘ — ‘Vd¢.s

Figure 5.9 diagonal crack with inclined stirrups.

For inclined stirrups, the Eq. (5.21) is computed by:

Vo= Aufy sind <3 /1% bud

(5.24)
<0249 \/f. bud I

Thus
Vi=n; 4, f, sinf (5.25)
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Where n,;, the total number of inclined stirrups, shear reinforcement is
crossing with an angle 6 and inclined crack is crossing with an angle 45°. The
distance of d includes, the number #, of stirrups through this distance are:

no = % (14 cot 6) (5.26)

x=d

v = d (1 +coi;45 tan ) (4, f, sin6)

y = A fy (sinf + cos6) (5.27)
S

Vertical stirrups

The vertical stirrups are perpendicular to the length of the beam or member
and an angle 4 is equal to 90° (Fig.5.10).

e v

Va
d
| «——

Figure 5.10 Diagonal crack with vertical stirrups.

When the stirrups are vertical to an angle = 90° the shear reinforcement V
is computed by:

Vs :Avfy n (528)

and the number of the stirrups equal to

n=- (5.29)
s
Substituted Eq. (5.29) into Eq. (5.28) the V is written
V= At (5.30)
s
From Eq. (5.30) the spacing between the stirrups is:
dA,f,
e b, 5.31
s 7 (5.31)

required ¢ Vi=V,— ¢ V. (5.32)
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5.7 LIMITATIONS FOR STIRRUP SPACING

ACI code required for maximum spacing of stirrups, should not be greater
than d/2 or equal to 24 in. The shear reinforcement ¥ is:

v, <4 \/f v inch-pound (5.33)
N
Vo< L byd ST (5.34)

If the shear reinforcement is between 4 4/f, b,d and 8 \/wad, the
maximum spacing is decreased to d/4, or not exceeds 12 in.

d .
Koo, = 3 < 24in.

Figure 5.11 Maximum spacing.

5.8 REQUIREMENTS FOR MINIMUM SHEAR REINFORCEMENT

In order to ensure a required area of a minimum shear reinforcement, A4, at
spacing s is:

Aymin = 0.75 4/f, = > 50 ——  inch-pound (5.35)
1 by S 1 bys

Av,min = f f_ Z 3 f ST (536)
y y

Where A, min, in Eq. (5.36) isin mm? and /,in MPa

Substituted Eq. (5.35) into Eq. (5.30), the minimum shear reinforcement V;
is equal to

a1, 4y ;
= —=040). a > * i
Vs P 0.75 1/f, bwd > 50 b,d (5.37)
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5.9 CRITICAL SECTIONS

The critical section is located at the distance d from the interior face of the
support. At that section, the nominal shear strength is located at the
diagonal crack. In this case, the shear strength V, reached its maximum at
the interior face of the beam support (Fig.5.12). The code permits for the
section located between the face of support and the critical section must be
designed for shear force V.

@) (b) TV T
w
i Y VvV VvV V¥V VvV V V¥V
critical —» l l
W I
section ' “ < & v, l
| |
“ > critical
| d Load section

critical }
section ] l Vi

—
d

©

Figure 5.12 Critical section.

5.10 REQUIREMENTS FOR DESIGN PROCEDURE

The shear force V, values at the center of the beam and at the end of the
beam is calculated by:

V,=12V;+1.6V,; (5.23)
and

V,< ¥V, (no stirrups required) (5.20)

Where V, is shear strength and also equal to:

Vo = Vot V, (5.21)

N
|

= shear strength in concrete

-
|

= shear strength in steel
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To obtain value of V,

Ve=2 /1, bud (57)
or

A (1.9 V42500 p, Md) b
If V.,>éV, and V,<8 \ﬁ byd

V,=Vi)é—V, (5.32)

For vertical stirrups V; equal to:
dA,f,

v, = (5.30)
S
d4,f,
_44Jy 5.31
= (5.31)
If Ve <4./f. byd (5.33)

s=d/2 or s<24in. (610 mm)

If V,> 4 \/f b,d (\/j bwd) ST

s=d/4 or s<12in.(305mm)

Where V, > 8 \/]7’0 b,d or (0.66 \/Z byd), for SI units, the cross-section of
beam needs to increase when V, < % ¢ V.. If V, is greater than ¢ V,, the
depth of the cross section should be increased.

Vis
Av = > Av min
frd ’
Where
Ayin = 075 /7 22 s>50 =
1 bys b.s
s, f > (—) SI (5.35)
B 3fy
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Example 5.3

Compute the spacing of stirrups for #4 bars, (4, = 0.4 in® for two
legs). If £, = 50 ksi (344 MPa), ch = 3 ksi (21.7 MPa) and shear force
V. is 60 kips (178 KNN).

SRIE}
#4 stirrups | | d=181in.
(¢ 12 mm) 3#9
A\
{25
b=12in.
|<——>|
Figure 5.13

Solution.
Form Eq. (5.7) the V. is:

, 1
Ve=2 /1. bud =2 V3000 (12 x 18) 555 = 23.66 k (105 KN)

If ¢ V,./2is less than V, the stirrups are important, where ¢ = 0.75

0.75 (23.66)

5 = 8.87 kips

i V. R
When V,, = 60 kips > ¢ 7 the stirrups are needed.

v, 60
Vs=—"— Ve =17z —23.66 = 56.34 ki
3= Ve =75~ 23.66 = 56.34 kips
5= AV]‘;’ d_ 0.4 (50> 18 = 6.41n. use 6 in.

Ve  56.34

¢
ng4\/f;bwd

4 /3000 (12 x 18) 1—01@ =47.32

Vi =156.34 > 4732k

From above value of V, the s is not greater than d/4

18

S=g= 4.51in. (controls)
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Check for 4, min, from Eq. (5.35)

b,s
A i, = 073 @/f'c L
’ Iy

(12 x 4.5)

= 0.75 /3000 ~——~——" = 0.044
0.75 /3000 o
bys (12 x 4.5) .
=50 2= =50 ~ "/ =0.054
F 50000 "
A =0.4in% > A, min = 0.054 in® 0.K

Example 5.4

Compute the spacings to be used for ¢ 8 mm stirrups. If f, = 345
MPa, f, = 27.5 MPa and shear force ¥, = 157 KN. Check for the
minimum shear reinforcement A4, min.

¢ 8 mm stirrups | d = 460 mm.
4; = 101 mm*
b =305 mm
le—»|
Figure 5.14

Solution.
From Eq. (5.8) SI units, the V, is:

Ve = 0.166 /1. bud
1 .
= 0166 V275 (305 x 460) t5o= = 122 KN (27.5 kips)
V, = 157 KN > ¢ 2VC stirrups are need
Vi
Vs Y Vc
¢
15
= —7— 122 = 87.3 KN

0.75
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_ A fyd 101 (345) 460

v, 27300 183.6 mm 3 mm

Fe

Vs <

b,d (for SI unit)

V275 1
- s — =2542KN
T (305 x 460) oor=2542K

Vs =87.3 KN <2542 KN OK

The spacing s is less than d/2

dj2 = ig_o = 230 mm

use s= 183 mm

Check for A, min. from Eq. (5.35)

Ay = 101 mm? (0.22 in?)

1 7 bes 1 460 (183)

AV s — e . = 2
min = T¢ s 7 T 27.5 345 80 mm
1 bys 1 460 (183) ,
Ay 0 =B LDR) o g
min =3 7T T3 345 i
Ay = 101 mm? > A, pmin = 81.3 mm? 0K

Example 5.5

Design the required spacing of U-shape stirrups in the simply supported
beam as shown in Fig. 5.15. The beam has dead load of 3 kips/ft
(43.8 KN/m) and live load of 5.7 kips/ft (83.2 KN/m). Use f, = 60
kips/in? (413 MPa), fJC = 4.5 kips/in® (31 MPa) and neglect weight of the
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w, = 12.7 k/ft
T A A

l = = e #4 stirrups

A

L=11ft

<

R

A\

A, =04in® |
‘fl.z.l‘lnL ’

b=15in.

Figure 5.15

Solution.
a - Compute factored shear V,
wy, =12 (3) + 1.6 (5.7) = 12.7 k/ft
Reaction of support
12.7 x 22

R= = 139.7 kips

Shear force V, at distance d from the face of support.

26
Vu=139.7-12.7 | —
9 12.7 (12

b - Shear strength of concrete:

Ve =2./f.bud
= 2 /4500 (15 x 20)
¢ Ve _ 0.5 (40.2)
2 2
¢ Ve
2
¢ - Spacing of critical section:

V., 112.2

1
1000

=15k

V,>

) = 112.2 kips

stirrups are needed

=402k

Ve =—"—V,=—=-402=1094k

é 0.75
_ Ay fyd 04 (60) 20
V. 1094

d - Check for maximum spacing of stirrups:

d 20 )
smax‘gizjzlom or <24in

Sreq.

Use Smax, = 10 in

=441n.

use 4 in.
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e - Check minimum area of stirrups

VA500 (1 .
Ay min 075\/7 - 875 va500 (15) 4] _ 503 i

60000
50 bys 50 (15) 4 :
AV = = = £ 2
min =" googp 0> m
A; = 0.4 in? > A, yin = 0.0503 in’ 0.K

f - Compute the distance y where stirrup is not needed that located

¢ Ve

between center of the beam and value of

¢ Ve 0.75(40.2)

= = 15 kips
2 3 P
. 15 (132)
distance y = ————~ = 141in
X="357
w, = 12.7 k/ft
v il ¢ i | % v vy !
i f; &
12 [in
A
139.7k |< Hjgslli 2l
82in@s=6"
44in@s=4" 70in@s=28"
. 4 i S4in @ s = 10" .
: | . >
\\:%< No Stlrrups
‘\‘\ Ve — 15k
fe— e —
6+d 14in

Figure 5.16
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The maximum distance for smax. = 10 in from the centerline of beam.
_ Ay d
10
_ 04 (60) 20
10

Vu=¢ Vet Vi)

Vs

= 48 kips

= 0.75(40.2 + 48) = 66 kips

_66(132) .
X10 307 02

62 — 14 =48 in.

48 . :
16 = 4.8 stirrups use 4 stirrups

4 (10) = 40 in.

In this example, the distance between 4 - and 10 - in. That critical section
and maximum spacing should choose other number as 6, 8 and 10.

Try 8 in from the centerline of beam:

_ A fyd 0.4 (60) 20

Vi = 60 kips
s 8

Vi=¢ (V.+ V) =0.75 (40.24+60) = 75.1k

B - B | -y
Xg = 1307~ MIn
71 —40 — 14 =17 in.
17 ) :
7= 2.125 stirrups (use 2 stirrups)
2 x 8 =161in.

Try 6 in from the centerline of beam:
Ay i K :

7, = f’d:04(60)20=80k1ps

s 6
Vi=¢ (V.+V,) =0.75 (40.2 +80) = 90.1k
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_90.1 (132)
Xg 139.7

852-40—-14—-16=1521n.

= 85.21in.

152 .
- 2.5 stirrups
2% 6=12in

(use 2 stirrups)

The critical section has s = 4 in. and the number of spacing is:

1 " .
132-4(10) -2 (8) —2x6— 14— <§support :6>:44m.

44
Z: 11 st.
11 x 4 = 44

(use 11 stirrups)

Spaced the first stirrup 2 in. from the interior face of the support then

run 11 stirrups at 4 in.

—» No stirrups

wy = 12.7 k/ft required
S = — —— =
r s ¥ " '6.«. A.é,’." 3/{‘ 8N ."1‘011‘. .‘10”; 1Q!iv.' i_O//' e r . A.I
| ' W2 ned 2a@¢ 208 4@ 10" 14"
N - Pyt re—
L=11ft

No stirrups
150k

6 + 20 = 26in.

Figure 5.17
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Example 5.6

Design the required spacing of U-stirrups for the beam of Fig.5.18.
Using ¢ 10 mm bar, f, = 400 MPa and 7, . = 30 MPa. The service dead
load D.L = 50 KN/m (without own weight) and the service live load
L.L =35 KN/m. The area of steel A, =462 mm* (3 ¢ 14 mm),
A, = 157 mm?, and support width = 250 mm.

p ¢10 | d = 500 mm
!‘L m =! stirrups
3 50 mm
Ay = 462 mm®
(b)
Figure 5.18
Solution.
a - Factored shear force V,, is
1
Own weight of beam = (0.55 x 0.3 x 2500 x 9.8) 1000 = 4 KN/m

wg = 1.2(50 + 4) = 64.8 KN/m
w; = 1.6 (35) = 56 KN/m

wy = 64.8 + 56 = 120.8 KN/m

Ve = 1—2&;;—(‘Q=241.6 KN

Shear force V, at distance d from support end

625
| 2 = 241.6 — 120.8 1000 = 166.1 KN
The V, at midspan is
Vu =é(56)4=28KN

b - Determine the spacing of stirrups and shear force of concrete:

v, = 0.166 \ﬁ byd

= 0.166 /30 (300 x 500) ﬂ)%(j =136.4 KN
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Shear force of steel:

V, 166.1
V. = AP e~ 1364=851 KN
: ¢ ¥ 0.75 5
) 1 -
Check for Vi, if less than or equal to 3\ [f. bwd
= \/ (300 x 500) 100 = 273.86

V, = 85.1 KN < 273.86 KN
_ A, fyd 157 (400 MPa) 500

req. A 35100 IV = 369 mm
Since V; is smaller than - \/> b,d, the maximum spacing equal to
d/2 or less than 600 mm.

Smax. > d/2 = 5—20 = 250 mm

Use s equal to 250 mm from interior face of support to place of ¢

0.75 (136.4
————(—) = 51.1 KN
2
No stirrups
70 mm required
Ny
Com i = = : z = |
\ . -7'. v e : 2 14 _-I
- L - L : -
T L/2=2m
250 mm . - >
A
241.6 KN
166.1 KN
51.1 KN
125 + 500 1 oV, P28 KN
= 625 mm v 2 at midspan

Figure 5.19
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Example 5.7

A simply supported rectangular beam has 18 ft span, f, = 60 ksi, f 'C =3
ksi, b = 14 in and d = 24 in. Compute the maximum distributed load w,
and design the spacing of vertical stirrups. The reinforcement ratio p is
0.0128.

b=14in.

wy = 10.45 kips/ft

'Y

O A T

w & F 7 ¢ ¥ w T2 - . |7

#3 stirrups

;s T . " T ].-
18 ft 'j' s A, =0.22in?
s |

Figure 5.20

Solution.
a - maximum distributed load w,

The maximum moment for Fig. 5.20 is

wy 12
M,=—
“ 8
Solve for moment from equilibrium equation.
T =¢C

T = A, f,=085f, ba
As = pbd =0.0128 (24 x 14) = 4.3 in*

Use 3# 11 bars, 4, = 4.68 in®

T = 4.68(60) = 281 kips
281 .
a = m = 7.87 in.

M, =T or C(d—g)

281 (24 - g) = 470 ft-kips

oM, =M,

S
[

0.9 (470) = 423 ft-kips



5.10 Requirements for Design Procedure 129

M, - wy 12
8

w, = : (423) = 10.45 kips/ft
(18)

R :w_,,l:10.45(18):94k

2 p.
b - Design the spacing of vertical stirrups.
Determine the shear force V), at distance d from support end

d = 24in.
32 .
Vi,=94—-1045 )= 66.1 kips

Determine the ¥,

v, = [1.9 VT 2500 p, zd

U

] byd < 3.5 /f. bud

As 4.68

v = T Taxag - 001¥

Determine the moment M, at d = 24 in. from the end of support

32 32\ 1 /32 .
24
661(—>
Vid 12)
i, = s =0.62<1.0 0.K
1 :
V. = [1.9 v/3000 + 2500 (0.0139) (0.62)] (14 x 24) 1000~ 42.2 kips
3.5 v/3000 (14 x 24) L = 64.4 kips
1000
V. = 42.2 kips < 64.4 kips 0.K
Required
Vv, 66.1
Ve=—"L2—V,=———422=459ki
s V=07 L
_Avfyd 022 (60) 24 B .
A 459 = 6.91n.

(at critical section)
use 6.0 in.
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Since s = 6 in at critical section.

d 24 . )
Smiax, = F=5 = 12 in. or = 241n.
use Smax. = 121in.

: Ve .. ;
At distance %, stirrups are not required

0.75 x 42.2 kips

=158k
> 15.8

distance y from centerline of beam:

15.8 (9 .
_ 594( ) _ 1,50 ft = 18.0n.
¢ Ve i i
V,= 66.1> 5 (stirrups are required)
2in.
H w, = 10.45 kips/ft
] ses 2ot @i
B
B MR
9ft

Figure 5.21




5.10 Requirements for Design Procedure 131

Since s is between 6 in. to 12 in. the code is limited; the maximum s is not
greater than d/2. In this example, the d/2=24/2 =12 in. is the
maximum chosen, that related with 7, as mentioned early. To compute
the actual spacing between 6 in. to 12 in. are 12, 10, 8 and 6 in.

1 - Smax. = 121in
y . 4 ¢ .
v, :Afyd:022(60)2 :3168=26.4k1ps
S Ky 12
¥ =¢ (V.+ V;)=0.75 (42.2 + 26.4) = 51.5 kips
51.5 (9 x 12 .
X, = % —59.21n.
From the center of beam:
59.2 —1.50 (12) = 41.21in.
41.2
55 = 3.4 stirrups use 3 stirrups
Ix12=236in.
2 - s = 10in.
316.8 .
VS = TO— =317 klpS
V., = 0.75(42.2 + 31.7) = 55.4 kips
55.4 (108
B ™ —9—(4—) = 63.7 in.
63.7-36-18.0 = 9.6 in.
9.6 . . ;
0= 0.96 stirrups (no stirrups are required)
3 - s=8in.
Ve = %§ = 39.6 kips
Ve, = 0.75(42.2 + 39.6) = 61.4 kips
_ 614 (108) y
XS . T = 70.51in.
70.5 — 36 — 18.0 = 16.5 in.
16.5
< - 2.06 stir. (use 2 stirrups)

2x 8 =161n.
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4 - s=6in. The remaining distance

108 — 36 — 18.0 — 16 — (0.5 support = 8 in.) = 30 in.

%O = 5 stir. (use 5 stirrups)
5% 6 =30in.

5.11 SHEAR - FRICTION

The shear friction is concerned with direct shear that is useful for precast
composite material and the diagonal tension crack may be occurred in the
composite construction without vertical steel reinforcement on the diagonal
crack to prevent shear failure.

Welded Bars

Expected Crack

Figure 5.22 Shear - Friction in corbel or bracket.

Figure 5.22 shows concentrated load acting on cantilever of reinforced
concrete and the expected crack started from adhere cantilever to main
construction. The area of shear friction reinforcement 4,,is placed across on
assumed crack to prevent shear-friction failure.
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Figure 5.23 shows the concrete block without reinforcement shear. Failure
plane occurs at the center of concrete block, but the friction reinforcement
A,rshould be placed in the dashing line to prevent shear failure plane.

— > Friction reinforcement A4, s

Sliples,

...................

== ===

Shear failure plane

\4

Avfﬁ/

Shear reinforcement

Figure 5.23 Shear - Friction in block of concrete.

The coeflicient of friction pu is related with expected crack and composite
material; the ACI code limited p as following.

Smooth and hardened concrete 0.6 A
Rolled structural steel by steel bars 0.7 A
Roughened and hardened concrete for surface clean 1.0 A
Cast concrete (monolithic) 1.4 A
The value of A is equal to
Normal - weight concrete A=19
Sand - lightweight concrete A=0.85
All lightweight concrete A=Ts
The nominal shear friction strenght V, is:
Vi=¢ Vy
Ve=Ayfy p<02f, A, (5.38)

or < (800 psi) 4,
V,<55A4. (N)

SI

(5.39)
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Where A, is the area of failure section of concrete, and A4, is the area of
shear friction reinforcement. N and P are factored loads and f; should be
less than or equal to 60 kips.

Example 5.8

Design precast beam for shear - friction across the crack at angle 20°,
Jy =60 ksi, f 'c = 4.5 ksi, use normal - weight concrete, temperature
and shrinkage T = 15 kips. The dead load and live load are 60 and 50
kips and the depth at bearing 21 in. by 11 in. wide.

14 v 4 v . : " 200
7
ta L )
™ g
Ry
Figurre 5.24

Solution.

Vea=12DL+16 LE
1.2 (60) + 1.6 (50) = 152 kips
T, = 1.2.{15) = 18 kips

Il

To determine temperature and shrinkage, choose the ACI-02 factor
load, which is 1.2 multiply by Ty effect.

Ve 152
Vo= —=-—"=202.7ki
N T T Ps
V= Avff:v M
Where p = 1.0 (normal - weight concrete)
Ve 2027

A= L 33802
I fn 60 (1)

Temperature and shrinkage T, = 18 kips, and the reinforcement to
resist effective area of the concrete 4. equal to

Tts = Anfy
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For uniform distribution along expected crack:
Ay = A+ A, =0343.38 = 3.68 in’
use 5 # 8 (From Table 2.5)

A; = 3.95in>
e ; S Ny
? - ” - - Ne20°
T - 7 7 L i
7577 b
%

Check for shear-friction in concrete:
Va<02f, A,

A, =bd =21 x 11 = 231 in?
1

0.2 (4500) (231) 1555 = 208 kips

Ve =202.7k <208k

O0.K

5.12 DESIGN PROCEDURE FOR CORBEL OR BRACKET

From equilibrium equation for vertical shear:
Vo = uT
T = duls
Va = p Avr fy
The ACI-11.9.1 limited the shear span to depth
a/d < 1.0
Where a is depened on bearing strength if not increased d
Vi > Ny
Where N, is tensile force and d take it from surface of support.

M, =V,a+ Ny (h—d)

(5.40)

(5.38)

(5.41)

(5.42)
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From Eq. (5.38) the V,, equal to:
Va<02f, A. < 800 4,

Where A, is equal to b, multiply by d, and the equation is computed by:
Vo, <02, byd < 800 b,d

Va

2 . “4 a
A 4—4 N, = horizental force
T:Q)’Asf;’ TP . -

<—A- .b-..~ . ~..‘ .‘ .. ‘r
P <)
ol 4 4
A o 1
« Shear* - - /0 ./

Cplane . | /o S d h

Compression strut —— -/

Lo w a/d < 1.0

Figure 5.25 Forces on a Bracket.

The tensile force N, is less than ¢ A4, f;, but N, is computed to a live load
and greater than 0.2 V,,.

A5 = Af+ Ay (543)
2
A;=3 A+ Ay (5.44)

The area of tension reinforcement A4, should be taken the greater of the Eq.
(5.43) and (5.44).

The total area A4 of closed stirrups should be greater than

Ap > 0.5 (4, — Ay) (5.45)
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Reinforcement ratio p is greater than 0.04 £, /f;

/

As f
= .04 ~< 5.4
p bd>004fy (5.46)

Where A4, is main tension of bar and b is width of column

Example 5.9

Design a bracket shown in Fig. 5.26 that carries a dead load and live
load of 25 kips and 35 kips. Compressive strength f /c is 4.5 ksi and
yield stress f; is 60 ksi. Assume bearing plate 3 in and N,, = 15 kips.

2in. = - [ h=12.5in.

Figure 5.26
Solution.
a - Determine the total factor loads
Vo =12DL+16L.L
1.2 (25) + 1.6 (35) = 86 kips
1.6 (15) = 24 kips

v, 86 .
Ve =-%—=% 1147k
6 0.75 ps

NMC’
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b - Compute shear-friction reinforcement:

Va
A, = =10
b
4,

14T,
—60—(1)—1911H

(3)+1.0=25in?

¢ - Determine the depth of bracket and assume 12 in square column
Vy=02f, byd
0.2 (4500) b,.d =900 b,d > 800 b,,d

Use 800 b,,d to determine depth of bracket:
V, = 800(12)d

114 )
= 300 Z?§)=11.9in. use 11 in.
a
-<1.0
d<
%20.23 < 1.0 0K

d - Compute minimum reinforcement ratio ppin.

7 4.5
. = 0.042¢ = 0.04 — = 0.003
Prmin. OOfy =5 =000

The column has 12 in. x 12 in.:
Ay = 0.003 (12 x 11) = 0.4 in®
N, 24
A, =% — = 0.53 in?
" %7, 0.5 (60) n

Ay = As+ A, = 0.4 +0.53 = 0.93 in’

2 )
As =3 Ay + 4, =3191+053=18 in’

Take the greater of A;

A, = 1.81in?
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Use 3#7 bars, 4, = 1.8 in?

Determine 4; by Eq. (5.45) for closed Stirrups.
Ap>0.5 (4, — Ay)
Ay =0.5 (1.8 — 0.53) = 0.64 in®

Use 3 # 5 bars, 4; = 0.93 in®

From ACI 11.9.4. Determine the spacing of stirrups

1
2/3 ?1 =244in~25in

try A4 =11+ 1(cover) + 0.5 (dim. bar)

=11+ 1+ 0.875/2 = 124 1in. use 12.5 in.

Use outer face of a bracket, is half of overall depth h

h 12.5
Front face==-=——=6.251n.
ront face 5 > 6.251n

Example 5.10
Design a bracket shown in Fig.5.27. If £, = 60 ksi, f’ /c = 5 ksi, live load = 30
kips and ¥, = 100 kips. Use length of bearing 12 in. X 4 in. and b,, = 13 in.

Vi beam

uc

Figure 5.27
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Solution.

V, = 100 kips

Ny = 1.6 (L.L) = 1.6 (30) = 48 kips

v, 100
V, = —2=— —1333K
5O ks

Compute shear-friction reinforcement and minimum reinforcement,
assume sand-lightweight concrete A = 0.85

g = 1.0(0.85) = 0.85

Va 133.3

A = = = 2.61 in’
S T fu 60 (0.85) -
/. 5
in. = 0.04-£=0.04 —=0.
Jo 7, 0.0 ) 0.003
M, =V,a+N, (h—d
1 .
a =(§)4+1.0:3m
Try h = 16in,d = 14in
ald = 13—4 =021<1.0 0.K
M, =100 (3) + 48 (16 - 14) = 396 in-kips

Ar = 0.003 (13 x 14) = 0.55in>

where b is equal to 13 in. for column:

P 396
77 0.85 x 60 x 14

_ Nue 48
¢ f, 075 (60)

Ay = As+ A4, =055+ 1.07 = 1.61in°

= 0.55in>

A, = 1.07 in?

2 :
As = 2/3 Ayy + A4, == (2.61) +1.07 = 2.81 in>
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Choose the greater of A,:
A, = 2.81in?
Use3#9bars, A, = 3.00in”
Compute for shear reinforcement Aj:
Ay > 0.5 (A — Ay,)
Ay =0.5 (3.00 — 1.07) = 0.97 in®

Use 4 # 5bars, A, = 1.241in>

2 g
Setie, = 3 <1—4> = 2.341n. use 2.5 in. stirrups

4

beam %

8//

h=16in.

Choose 8 in. = g for exterior bracket.

o 1.128
h = embedded plate + d + bar radius (—2—>
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h =1+14 + 0.564 = 15.564 in
use h = 16in. 0K
5.13 PUNCHING SHEAR

A heavy concentrated load has a special attention when the area carries that
load is small. The punching shear takes place around the column to effect on
the footing or slab, which causes a shear failure. As a result, the inclined cracks
will be longer where the loads increased and the diagonal crack started from
the top of the footing and extend to the bottom diagonally as shown in Figure
5.28. The ACI code limited punching -shear failure occurs at critical section
d/2 from all exterior sides of the column joined with footing or a slab.

2 T

-
_ 3 TN
bt ottt tt
dj2 | d/2
__/\/__
Critical Section (b) Slab

»|
gl |

(a) Footing

Critical Section

df2
; I — — @
©

*—X
d/2

_4\/___

Figure 5.28 Punching shear.

ACI 11.12.2.1 determined the punching shear ¥, for the smallest of:
4 ,
(@) Ve= (2 + ﬂ_> f. bod (5.47)

(a))  y= <1 +ﬂ3> 0.166 (/1% bod SI (5.48)

(44
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(b)

(b1)

©

(c1)

Where
Be

Oy

by =

Il

Ve =0.333

corner. 4,3 and 2 sides.

d = footing depth.

V. = punching shear.

SI

SI

long side to short side ratio of the column or reaction area.

critical section for 40 interior column, 30 edge column and 20

distance from the exterior around faces of column.

/\/

dJ2

f

Yan

\/\

(a) Interior column

dj2

Tan

—A

(c) Corner column

2] ,

1

(b) Edge column

Figure 5.29 Column locations of slabs.

(5.49)

(5.50)

(5.51)

(5.52)
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Example 5.11
Check punching-shear failure for footing and the compressive strength
jjc is 3 ksi (20.7 MPa). The dimensions are shown in Fig. 5.30.

P, = 190 kips (845 KN)

;

[N

¢4 (soil pressure)

d = 15in. (380 mm)

fe—

T
""""""" i'éi'i'ﬁ'."""""'gid/z
12fin. - 4 ft (1220 mm)
| 6 ft (1830 mm) |
= |
Figure 5.30
Solution.
by =2 (14+12+24d)
12
=214+ 12+ 2(15) = 11—2 = 034 ft
_ 190 190 ) 5
qu = x4 a4~ 7.92 kips/ft

Where g, is the soil pressure of the footing
R = (225%x24) g, =54x%x7.92 =428 kips
V, = 190-42.8 = 147.2 kips

The punching-shear failure is:

, 1 .
Ve = 4 \[fe bod =4 /3000 (112 x 15) - = 368 kips

¢ V. = 0.75(368) = 276 kips > V,, = 147.2 kips (safe)



5.13 Punching Shear 145

P, = 190 kips P, = 190 kips
L d/2 . _‘;_141vn..~ ’ dj2 B dj2 ‘;‘.12.ir-1_: R dj2 .

ttttttttttt  tttitttttrt

Qu Gu
f—f————f—] f——f———f—>|
7.51n. 14 in. 7.51n. 7.5 1in. 12 in. 7.51n.
Je—— 29in. =24 ft —»| Je— 27in. = 2.25ft ————»]

Example 5.12

Check punching-shear for solid slab with interior rectangular column
24 in. x 12 in. and fJC = 3.5 ksi, the thickness of slab ¢z, = 7 in. and
d = 5.5 in. The shear force V,, is 60 kips.

24" x 12"
____/\_,_‘__

I

o
bo=2(d+24+d+12) =% in.

Figure 5.31
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Solution.
a - Using Eq. 5.49

asd ;
y, = (bo +2> \/fcb,,d

ay = 40 (for interior column)

Ve

40 (5.5) 1 .
Vv 5) ——=132.7k
( 0 +2> 3500 (94 x 5.5) {50 ips

b - Using Eq. 5.51
Ve =4,/f. byd

4 /3500 (94 x 5.5) ﬁ = 122.3 kips

The smallest of V. is:
V. = 1223 Kkips
¢ V.
¢ V. = 91.7kips > V,, = 60 kips

0.75 (122.3) = 91.7 kips

¢ - Determine the punching shear V, for the smallest of the following
by using Eq. (5.47).

V.= <2+ﬂi> \/Zbod

B, 1s long side to short side ratio of column
24

= =2

fe =1

d =55in. dj2 =2.75

by = 2(5.5 + 24 + 5.5 + 12) = 94 in.

4 1 .
v, = <2 +§) V/3500 (94 x 5.5) 1555 = 122.3 kips
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5.14 DEEP BEAMS

Deep beams are defined in ACI-02, 10.7.1 as members loaded on one face

and supported on the opposite face so that compression struts can develop

between the loads and the supports. Deep beams should satisfy one of the

following conditions:

a - Clear span to overall depth ratio /,/4 is not greater than 4; or

b - Regions loaded with concentrated loads within twice the member
depth from the face of the support.

P ey

Figure 5.32 Deep beam with distributed load.
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p p
a<2d a<2d
= | Pt .
I v As ' I
i w— A - ; - " 3 3
> 5 <_Vv ‘ : "‘A > ! ~ -
o B S At T e s AL J
1 g m.r 1 '>.-‘ITSz'§ a5 . . -1y
| 3// ln 3// | 4
I 2d . 2d 1
| e b

Figure 5.33 Simply supported beam with concentrated load.

Shear strength of Deep Beams

According to ACI-02, 11.8.1, deep beams shall be designed using either non-
linear analysis or strut and tie model.

Shear strength V,, for deep beams shall not exceed the values given by the
following equations:

Vo =10 /1, bud il — pound (5.53)
Vo =083 \/f, bd SI (5.54)
where
b,, = width of the beam web
d = depth of the beam (Fig. 5.32)

For simplicity earlier versions of the ACI code can be used to design the shear
reinforcement of deep beams.
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Simply Supported Deep Beams

The maximum shear force measurad for critical section at a distance y from
the interior face of the support.

x=0.1517,<d (uniform loading beam)
x=05a<d (concentrated load)
Vo< g Vy
Vi=V.4+ Vs
Ly
Voo™ (10+ )[bd for 252<s (5.55)

Where

V. = factored shear force

V. = shear strength of concrete

V, = shear strength of steel

d = depth of deep beam

I, = clear span

a = distance of shear span from the interior face of support to the load.

For a simplified method ; thus

Ve=2/f. bud (5.56)
v, = (35—25 ><1 9 /f+2500 p, —d> bod (5.57)

The first part of Eq. 5.57

3.5-2. < 5.58
(35-25 2 <25 59
and ¥, is not greater than Eq. (5.59)

Ve <6\/f. bud (5.59)

Where M, is the factored moment at the critical section
Design procedure for ¥V

RSP  § ..

Av ; vh _;
S A 5.60
; [ (12>+Sz(12 )]f” >
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Where
A, = area of vertical stirrup

Il

s distance between stirrups

[, = distance between both interior face of supports

A,y = area of shear reinforcement parallel to main reinforcement
with a distance s,

Sy vertical spacing between stirrups

d = depth of deep beam.

Continuous Deep Beams

For simplifed method: thus

) \/f;bwd

V. < ¢ V. if not use the following equation

vV, = (1.9 \/]7’6+2500 D ;;d> byd < 3.5 \/ch bwd

Ay fyd
s

and

Vs

Minimum Shear Reinforcement (ACI-02)
The area of vertical shear reinforcement 4, shall not be less than:

A, > 0.0025 b,,s (5.61)

The area of horizontal shear reinforcement (parallel to the span) A4,; shall
not be less than:

Ay, > 0.0015 by, 57 (5.62)
Where
s = spacing of vertical shear reinforcement
sp = spacing of horizontal shear reinforcement

The spacings s and s, should not exceed:

12 inch > s < d/5 (5.63)

12 inch > s, < d/5 (5.64)
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Minimum Flexural Reinforcement

Minimum flexural tension reinforcement is given by ACI-02, 10.7.3 to be the
same as for other flexural members as:

3 441
L bwdg \/7 byd inch-pound (5.65)
P
s,min —
1.4 b,d \//7::
<—-— b,d SI (5.66)
Iy 41
Example 5.13

A simply supported beam carries two columns at the spacing of 3 ft. from
the both faces of support, and the columns have live loads of 90 kips. The
clear span of 9 ft, depth d of 30 in. and 15 in. width. Use f, = 40 ksi and
f Ic = 4 ksi. Compute the shear reinforcement and determine the requiremed
steel for both horizontal and vertical reinforcement. The beam has unit
weight v, = 150 Ib/ft* (2400 kg/m®) and A; = 4.68 in® (3 # 11 bars).

P =90 kips P =90 kips

| a=3, "Tﬁ 3, A,T; a:3/

e . CER T ma - AL B e, B o fee IR P

N

P i —t o~
" .

12" 12"

¥
Yy

=~
Il

N

=
A\

]

Y

b, =15
]

Figure 5.34
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Solution

a - Own weight = 331:415 (150) = 515.6 Ib/ft = 0.515 k/ft
L 9(12)
iRl Ta 3.27< 4

. & . .
Since Z" < 4 the simply support is deep beam.

1
§a=%(3x12):18in. <d = 30in.

Critical section is 18 in from interior face of columns.

b - Compute shear force V,

Vi =Vir+Vpr
Vir = 1.6(90) = 144 kips
L, a 9
7 —s=5—15=3f
Vpr = 1.2(0.515k/ft) 3 ft = 1.85 kips
V, =144 + 1.85 = 145.85kips
M, = 144(1.5) = 216 ft-kips
342 S0 ——=10.59
u 145.85 (E)
35-25—-"-=35-25(059)=2<2.5 0K
Vd (0.59) =2 <
, Vid
v, =12 (1.9 e +2500 p, V) byd
A, 468
y === =0.0104
# bd 15 (30)
17 (15" x 30" .
v, [1 9 \/4000 -+ 2500 (0.0104) ~ 59] T 7.5 kips
max. allowed V,, = = (10+ ) [b d
2 .
max. Vy= 3 (10 + 3.6) v/4000 (15 x 30) ToiE 258.2 kips
, 1 .
max. ¥, = 10 4/f’ byd = 10 /4000 (15 x 30) “o0g = 2846 kips

Shear force at critical section

145.85

075 = 194.5 kips

Required Vi, =
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¢ - Nominal shear strength
V, =258.2kips > V, = 194.5 kips 0K
and

V,=194.5kips > V, = 147.5 kips
(horizontal and vertical shear steel is required)

d - Compute for horizontal and vertical reiforcement
Vi=V,—V,.=194.5—147.5 = 47 kips

Assume no. of bars for horizontal reiforcement then solve vertical
bars.

Try #3 bars horizontally then check for minimum
"

d 30 )
H < -—=—= :
max 52_5 5 6 1n

use spacing s, = 6 inch
min. 4,; = 0.0015 5 s, =0.0015(15in.) 6 = 0.135 in?

Use # 3 bars, Ay, = 0.11 (2) = 0.22in* > 0.135 in? 0.K
e - Design shear

In Iy
A (1) (A (Boa) | _ %
s 12 $2 12 Jyd

Vs =47 kips,
J» = 40000 psi.

A, (1436\ A, (11-36 47
= =i ‘3
[s ( 12 )+sz ( 12 )] 20x30 - 0%

[ﬂ (4'6> M. (0.616)] =0.039

S~

§:3.6 in, Ay, =022 in%, »=15 in and

s \12 6
A,
" (0.383) + (0.023) = 0.039
A4,

— =0.043
s
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Compute for vertical steel 4,

Use #4 bars, 4, =2 (0.2) =04 in?

0.4 - d .
—_— — > —
K 0.043 9.31n 5 6 1n.
use 6 in.

Check minimum A4,

A, = 0.0025 (15) 6 = 0.225 in”

A, = 0.41in®> > 0.225in? 0.K

For horizontal /, = 9 ft

t (12) —
M = 17 spaces from 3 in. of support
6 in
For vertical d = 30 in. and s = 6 in.
30

<= 5 spaces at bottom of no. 3 bar

_T_ _._../T__
5 3ft 1l 3 ft Sl 3 ft
I< B sl

;r\*ﬁj**m*%Vﬂ“-“aR%.‘*.55“
% 2 Ay q - .
| ‘ I<#3 ho;lzC:)n;;Iz,ll bars 3\# . 17 spacing @ 6 in. \ #4 vertical ba:l.s " :
| =91t e ls
#3
#4 d 30 in.
h
3#11
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Example 5.14

A continuous beam is to carry distributed factored load w, = 25 kips/ft.
If f,=4 ksi, f,=40 ksi and 4,=3 in®>. Compute the shear
reinforcement and determine the area of steel for both horizontal and
vertical reinforcement.

"

b, =15
f—
R T T S S mam
ﬁ»d ‘ l.- ‘ ; l_r ‘ ‘<> . _' \ 3 d: 32 1n h _ 36 1n
M el
1 h=121t i
Figure 5.35
Solution.
L, 12 (12) _d
T

. A :
since Z" < 4 the continuous beam is deep beam

a - Determine the spacing between face of support and critical section x.

Xx=0150,=0.15(12)=18ft <d=267ft OK

and the shear factor at critical section V, is:

150 k
V,=105k

critical |

section 7

4.2 L/2=6

A
b 4
7y
X

x =138
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R=-"2X= = 150 ki
5 ips
150 VW,
=L V,=105k
6 42
Use simplified method

=2 \[f. bud =2 VA0 (15 x 32) o5 =60Tkips <V, ng

It is not enough to carry factored force V,

= (1.9 V742500 p, %) bud < 3.5 \[f. bud

wy 1225 (12)°
111

V.d 105 (32)

M, 327.3 (12)

M, = — 327.3 ft-k (from Fig. 8.3b)

=0.85<1.0 OK

Use 3#9 bars, 4, = 3.0 in>
3.0

= = 0.006
Pw=xaz) - 00

3.5—2.5(0.85) = 1.37

32 .
V. = 1.375 [1.9 v/4000 + 2500 (0.006) 0.85] (1_5102T) = 87.7 kips
(15x32) .
3.5 /4000 1000 = 106.25 kips
V.= 877k < 106.25k O.K

b - Check minimum shear reinforcement

v, 105
VS = —— , =
& Ve=075

Vo=V.+Vy=877+523=140kips > V, = 105kips O.K

— 87.7 = 52.3 kips

¢ - Check maximum shear reinforcement

Iy
==
d_2

Use the following equation

Vn=§ (IO—I— ) \/'bud
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[SST \S]

1000
¢ V, = 0.75 (294) = 220.5 kips > 87.7 kips

d - Horizontal shear reinforcement

Use#3bars A, = 2(0.11) = 0.22in?

Ay = 0.0015 by, 5
0.22 .
- _9gin.
i 0.0015 (15" n

S2 S%Z or 12i1n.

32
max. s, =d/5= 5= 6.4  orl2in.

use s, = 61n.
min. A, = 0.0015 (15) 6 = 0.135in? < 0.22 in”
use A, =0.22in’

2
d/s = % =53 use 5 spaces

use #3 horizontal stirrups at 6 in.

(10 +4.5) V4000 (15 x 32) —— = 294 kips

0K

OK

e - Vertical shear reinforcement, use #3 bars, 4, =2 (0.11) = 0.22 in?

A, = 0.0025 b,s
4, 0.22

= = = 5.87in.
0.0025 (15) _ 0.0025 (15) m
d 32 y .
max. § = =5 = 6.4 in. (use 5 in. spacing)
144 — 4
5 = 28 spaces

Use #3 bars at 5 in. throughout the span of beam.
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5 @ 6 in. (#3 horizontal) N
y . -

d=32in.

3#9

W s RERNEE U Lo \ ;
- . ' q . ' J : A U ._ " "' o e - '.. . : - LA g "
- —
" g S — —— _;.\\

28 @ 5" throughout 140 in. (#3 vertical) ©

PROBLEMS

5.1

Determine the shear strenght V., for the cross section of the beam as

sketched in Fig. P5.1. Assume DL = 3.5 k/ft and LL = 6 k/ft. Use
£, = 55ksi, /. = 4.5ksi and 4; = 3.81 in%.

a0

Section A-A

19 in.

Figure P5.1
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5.2

5.3

54

3.5

5.6

Recalculate the shear strength V. for Prob. P5.1 by using SI units.

The beam of Fig. P5.1 is subjected to axial tension force with
N, = —20 kips and |, = 3.5 ksi. Determine the shear strength V.

What is the spacing of #4 stirrups where 4, = 0.4 in” (¢ 12 mm, 4, = 226
mm?) for two legs, the factored shear force ¥, = 47 kips (209 KN). Use
f, = 60 ksi (420 MPa) f,, = 3 ksi (20 MPa) and check for 4, min.

d=17in.

#4 stirrup —s o P 0nl
(430 mm)

3#10 bars

=13 in. (330 mm)

|
Figure P5.4

Determine the spacings to be used for #3 stirrups where
A4, =0.22 in?. (¢ 10 mm, 4, = 157 mm?) as sketched in Fig P5.4. Use
V, = 62 kips (156 KN), f;, = 50 ksi, /. = 4 ksi and check for A, mn.

Design the required spacing of stirrups for simply supported beam,
shown in Fig. P5.6 to carry distributed live load of 2.5 k/ft (36.5KN/m)
and distributed dead load of 2.0 k/ft (29.2 KN/m) neglected beam
weight. If £, = 40 ksi (345 MPa) andf’c = 4 ksi (27.5 MPa).

14" (355 mm)

d=26"

(660 mm)

4$22 mm

#3 stirrup

Figure P5.6
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DL k/ft LL k/ft

Case fc (KN/m) (KN/m) [, ksi (MPa)
1 3.5 ksi 2 k/ft 2.75 k/ft 40 ksi
(20 MPa) (146 KN/m) (25.5KN/m) (280 MPa)
2 4 ksi 2.5 k/ft 3.0 k/ft 45 ksi
(25 MPa) (22KN/m) (29.2KN/m) (310 MPa)
3 4.5 ksi 2.75 k/ft 3.25 k/ft 45 ksi
(30 MPa) (29.2 KN/m) (40 KN/m) (310 MPa)
4 5 ksi 3.0 k/ft 3.5 k/ft 60 ksi
(35 MPa) (44 KN/m) (58 KN/m) (420 MPa)

5.7  Design the required stirrups for the beam shown in Fig. P5.7. If f, = 50
ksi (350 MPa) and ]Jc = 4.5 ksi (30 MPa). Use #4 U-shape stirrups.

12
w, = 10 k/ft B Tl K
T 2 20 2 2 2 2 2 I
16 ft 7777
o
6 6 3 # 8 bars
Figure P5.7

5.8  Determine the stirrups for T-beam shown in Fig. P5.8, if f, = 50 ksi (350
MPa) and f, = 4 ksi (27.5 MPa). Use # 4 stirrups and span L = 16 ft.

#4 stirrup

Figure P5.8
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5.9

5.10

5.11

5.12

Redesign the stirrups in Prob. P5.8 by using SI units.

Design a bracket shows in Fig. P5.10 to support a dead load of 40
kips (178 KN) and live load of 60 kips (267 KN). Assume bearing
plate 4 in (100 mm) and N, = 25 kips (111 KN). Iff'c = 4 ksi (27.5
MPa) and f, = 60 ksi (420 MPa).

14 x 14in. v,

Figure P5.10

Redesign the bracket, shown in Fig. P5.10 to support DL = 30 k and
LL = 50 kips. Assume N, = 17 kips.

Determine the shear reinforcement and the steel requirement to use
in both vertical and horizontal reinforcement for a simply supported
deep beam to carry dead load of 20 kips (89 KN) and live load of
50 kips (222 KN). Assume the unit weight of the concrete 7, =
150 Ib/ft® (2400 kg/m>), £, = 4 ksi (27.5 MPa) and f, = 50 ksi (350
MPa).
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6 ft (1.8 m) 6 ft (1.8 m)

Y.
N Ul

LA I, =10 ft

v
A
¥

SH
I

e

B

T ‘!r

11 ft

L P

Figure P5.12

5.13 Redesign the vertical and horizontal reinforcement for a simply
supported deep beam (Fig. P5.12) to carry distributed load of w, = 22
k/ft (neglect concentrated load). If fJC = 3.5ksi and f;, = 50 ksi.





