Lecture (1) - Basic Concepts

Topics

- Loading Types
- Support Types
- Beam Types
- Beam Reactions

Introduction:

Loading Types:

Concentrated Load

- Concentrated Force
- Concentrated Moment

Distributed Load

- Uniformly Distributed Load (UDL)
- Linearly Varying Distributed Load (LVDL)

Support Types:

4. Roller support	Roller, rocker, or ball support transmits a compressive force normal to the	Roller
6 Pin connection	Pin free to turn A freely binged pin	
	Pin not free to turn R_x R_y R_y R_y Pin not free to turn R_x R_y R_y R_y R_y R_y R_y R_y R_y R_y R_y R_y R_y R_y R_y R_y R_y R_y R_y	Hinge
7. Built-in or fixed support	$F \xrightarrow{M}_{V} V$ A built-in or fixed support is capable of supporting an axial force F, a transverse force V (shear force), and a couple M (bending moment) to prevent rotation.	Fixed

Supports

Roller

Hinge

Introduction - Cont.

Beam Types:

Statically determinate beams:

- Simply supported beams
- One-sided over-hanging beam
- Two-sided over-hanging beam
- Cantilever beam

Statically determinate beams

Statically indeterminate beams:

- Continuous beam
- End-supported cantilever
- Fixed at both ends

Statically indeterminate beams

Support Reactions

Beam Reactions:

Example (1)

Determine the reactions at A and B for the beam subjected to the uniform load distribution.

Ans. $R_A~=~1.35~\mathrm{kN},\,R_B~=~0.45~\mathrm{kN}$

Example (2)

5/97 Determine the reactions at A for the cantilever beam subjected to the distributed and concentrated loads. Ans. $A_x = 0, A_y = 8$ kN, $M_A = 21$ kN·m

Example (3)

5/94 Determine the reactions at the supports A and B for the beam loaded as shown.

Lecture (2) - Internal Forces (Beams)

Topics

- Internal Forces in Beams
 - \circ Why?
 - \circ Sign Convention
 - \circ Procedure

Internal Forces - Beams

- ★ Why?
- ★ Sign convention
- **†** Procedure

Lecture (3) - V and M Diagrams

Topics

- Shear Force and Bending Moment Diagrams
 - Why?
 - Sign Convention
 - Procedure

Example (1)

Example (2)

Example (4)

Example (6)

Lecture (4) - Trusses (MOJ)

Topics

• What is a truss

- Truss main parts (Terminology)
- \circ Assumptions
- Procedure (MOJ , MOS) & when to use which
- Sign convention (T or C)?
- $\circ~$ How to avoid confusion?
- \circ Table for final answer

Examples

Trusses - Introduction

★ What are they?

Introduction Cont.

- **★** Assumptions for Analysis of Trusses:
- 1- All members are connected only at their ends by frictionless hinges (No end moments)
- 2- All loads and support reactions are applied only at the joints.
- 3- The centroidal axis of each member coincides with the line connecting the centers of the adjacent joints.
- **★** Two Force Members?!

- **†** Procedure (MOJ , MOS)
- **★** When to use MOJ and MOS?
- **★** Sign convention (T or C)?
- **★** How to avoid confusion?
- ★ Table for final answer

Method of Joints (MOJ)

- \star Procedure
- **★** Sign convention (T or C)?
- ★ How to avoid confusion?
- ★ Table for final answer

MOJ - Example

MOJ - Example (1)

MOJ - Example (1) Cont

Member	Force (lb)	Туре
AB		
BC		
CD		
DB		

MOJ - Example (2)

B C 2 m 2 m E 2 m E 2 m E 2 m E 2 m

MOJ - Example (2) Cont

Member	Force (kN)	Туре
AB		
BC		
BD		
AE		
ED		

MOJ - Example (3) Cont

Member	Force (N)	Туре
AB		
BC		
СВ		
BA		
AC		

Lecture (5) - Trusses (MOS)

Topics

- Idea! & when to use MOS
- Procedure
- Sign convention (T or C)?
- How to avoid confusion?
- Table for final answer
Method of Sections (MOS)

- ★ Idea! And when to use MOS
- \star Procedure
- ★ Sign convention (T or C)?
- **★** How to avoid confusion?
- **†** Table for final answer

MOS - Example (1)

Member	Force (k)	Туре
GH		
GD		
CD		

MOS - Example (2)

★ Need DC, AC, and AB

MOS - Example (2) - Cont.

Member	Force (N)	Туре
DC		
AC		
AB		

MOS - Example (3)

★ Need HI, HC, and BC

MOS - Example (3) - Cont.

Member	Force (k)	Туре
н		
НС		
BC		

MOS - Example (4) ★ Need GH, BH, and BC 4k 2k 4k 4k 2k I↓ G↓ H↓ F hA CB D4 at 6 ft = 24 ft -

Member	Force (k)	Туре
GH		
BH		
BC		

Lecture (6) - Internal Forces (Frames)

Topics

- What are Frames
- Frame reactions
- Frame internal forces
- Sign convention?
- How to avoid confusion?

Braced Structural Frame

Gabled Structural Frame

Portal Structural Frame

Frame Analysis - Cont.

Types:

Reactions

Internal Forces

- **†** Procedure
- **★** Sign convention?
- **How to avoid confusion?**
- **†** Procedure
 - Cut through desired point
 - Get support reactions (if needed)
 - ► Apply the 3 equilibrium equations

$$\sum F_y = 0$$
$$\sum M = 0$$

Μ

 $\sum F_x = 0$

Frame Reactions + Internal Forces Example

Frame Reactions (2)

Internal Forces (2)

Internal Forces (3)

Internal Forces (4)

Lecture (7) - Beam Deflections

Topics

- Why?
- Deflected beams shapes
- Factors?
- Sign convention
- Equations

Why Study Beam Deflections?

- Forms the basis for analysis and design of indeterminate structures.
- To keep them within acceptable limits to avoid structural and none structural damages.

	BEAN		

Examples of Beam Deflection

Factors Affecting Beam Deflections

Factor	Symbol	Туре
Applied load	W	Directly proportional
Span length	L	Directly proportional
Modulus of Elasticity	Е	Inversely proportional
Moment of Inertia	Ι	Inversely proportional

$$\Delta_{max} = \frac{5 \ w \ l^4}{384 \ E \ I}$$

Tabulated Equations

1. SIMPLE BEAM — UNIFORMLY DISTRIBUTED LOAD

19. CANTILEVERED BEAM - UNIFORMLY DISTRIBUTED LOAD

Total	Equiv. Uniform Load	=	4 w?
R = \	/	=	w/
V_x		=	WX
M _{max}	(at fixed end)	=	$\frac{wl^2}{2}$
M _x		=	$\frac{wx^2}{2}$
Δ_{max}	(at free end)	=	<u>wl⁴</u> 8 <i>El</i>
Δ_x		=	$\frac{w}{24El}\left(x^4-4l^3x+3l^4\right)$

Example

For the beam shown in the figure below, calculate the deflection mid-span of the beam shown in the figure. Given:

Example (2)

For the beam shown in the figure below, calculate the deflection of the beam at the mid-span. Given:

 $E = 95 \,\text{GPa}, \quad I = 100 \times 10^6 \,\text{mm}^4$

Lecture (8) - Loads on Structures

Topics

- Load Types
- Load Categories
- Load Combinations
- D vs. L
- Load Paths Tributary Areas (Columns)
- Load Paths Tributary Areas (Beams)

Loads on Structures - Introduction

- **±** Load Types
- toad Categories
- **★** Load Combinations
- ★ D vs. L

Load Types:

- Concentrated loads:
 - Applied over relatively small area
 - Examples: Column loads, Vehicular wheel load

• Line Loads:

- Distributed along a narrow strip of the structure
- Examples: Beam self-weight, weight of wall or partition

• Surface Line Loads:

- Distributed over an area of the structure
- Examples: floor and roof loads

Load Categories - Dead Load

• Dead Loads:

- Various structural members & objects that are *permanently* attached.
- Can be **calculated** knowing the **densities** and **dimensions** of the structural components.
- Unit weights of typical **building materials (codes and standards)**
- Unit weights of **service equipment (Manufactures)**
- Small structures (small error) can be ignored
- Multistory structures (high error) cannot be ignored.

\checkmark	Roof Slab	\checkmark	Walls
\checkmark	Floor Slab	\checkmark	Windows
\checkmark	Beams	\checkmark	Plumbing
\checkmark	Girders	\checkmark	Electrical Fixtures
\checkmark	Columns	\checkmark	Ducts

Construction Materials	Density (kg/m³)*	Construction Materials	Density (kg/m³)*
Water	1000	Cement mortar	2080
Sandy soil	1800	Concrete (P.C.C)	2400
Clay soil	1900	Concrete (R.C.C)	2500
Gravel soil	2000	Steel	7850
Sandstone	2000	Cast iron	7208
Silt	2100	Copper	8940
Asphalt	721	Iron	7850
Cement	1440	Glass	2580

*Note: to convert density from kg/m³ to kN/m³, multiply by (9.806 x 10⁻³)

Load Categories - Live Load

- Live Loads:
 - Vertical loads due to human occupancy, snow, rain ponding, furniture, partition walls and moveable equipment.
 - Horizontal (lateral) loads due to wind, earthquake, water pressure, blast/explosion, collision, etc.
 - They can be caused by **weights of objects temporarily** placed on a structure, **moving vehicles, or natural forces**.

✓ Building Loads	✓ Snow Load
✓ Highway Bridge Loads	✓ Earthquake Loads
✓ Railroad Bridge Loads	✓ Hydrostatic Pressure
✓ Impact Loads	✓ Soil Pressure
✓ Wind Loads	✓ Other Environmental Loads

- Floors are assumed to be under uniform live loads which depend on the purpose for which the building is designed.
- These loads are usually tabulated in adapted code.
- These values include some protection against overloading, emergency situations, construction loads, and serviceability requirements due to vibration.

TABLE 1.4 Minimum Live Loads*							
Live Load				Live Load			
Occupancy or Use	psf kN/m ² Occupancy or Use		psf	kN/m ²			
Assembly areas and theaters			Residential				
Fixed seats	60	2.87	Dwellings (one- and two-family)	40	1.92		
Movable seats	100	4.79	Hotels and multifamily houses				
Garages (passenger cars only)	40	1.92	1.92 Private rooms and corridors		1.92		
Office buildings			Public rooms and corridors	100	4.79		
Lobbies	100	4.79	Schools				
Offices	50	2.40	Classrooms	40	1.92		
Storage warehouse			First-floor corridors	100	4.79		
Light	125	6.00	Corridors above first floor	80	3.83		
Heavy	250	11.97					

*Minimum Live Loads, Reproduced with permission from American Society of Civil Engineers Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10, American Society of Civil Engineers.

Load Combinations

★ Why? ★ How?

 \sum (Load × Load factor) \leq Resistance × resistance factor

$$\sum \gamma_i Q_i \leq \phi R_n$$

 γ_i : a load factor

 Q_i : applied load

 ϕ : resistance factor

 R_n : the nominal resistance or strength

 ϕR_n : the design strength

$$1.4(D+F) \tag{1}$$

$$1.2(D+F) + 1.6(L+H) + 0.5(L_r \text{ or } S \text{ or } R)$$
(2)

$$1.2(D+F) + 1.6(L_r \text{ or } S \text{ or } R) + 1.6H + (f_1L \text{ or } 0.5W)$$
(3)

$$1.2(D+F) + 1.0W + f_1L + 1.6H + 0.5(L_r \text{ or } S \text{ or } R)$$
(4)

$$1.2(D+F) + 1.0E + f_1L + 1.6H + f_2S \tag{5}$$

$$0.9D + 1.0W + 1.6H \tag{6}$$

$$0.9(D+F) + 1.0E + 1.6H\tag{7}$$

Source: International Building Code (2015)

Where:

- D = Dead load
- E =Combined effect of horizontal and vertical earthquake induced forces
- F = Load due to fluids with well-defined pressures and maximum heights
- H = Load due to lateral earth pressures, ground water pressure or pressure of bulk materials.
- L = Roof live load greater than 20 psf (0.96 kN/m²) and floor live load
- $L_r = \text{Roof live load of 20 psf} (0.96 \text{ kN/m}^2) \text{ or less}$

• R = rain load

- S = snow load
- W =wind load

Load Paths - Tributary Areas (Columns)

Tributary Areas for beams and columns:

- Definition:
 - Beams: The area of slab that is supported by a particular beam is termed the beam's tributary area.
 - Columns: the area surrounding the column that is bounded by the panel centerlines

Load Paths - Tributary Areas (Beams)

• Notes:

- Tributary area for **interior columns** is four time **(4x)** the tributary area **typical corner column.**
- Tributary area for **beams surrounding a "square" slab share equal portion** of the load applied to that slab.
- For rectangular slabs, the load shared by the beams in the short direction is triangular whereas the load shared by beams in the long direction is trapezoidal.

Approximate Methods:

- In short, the trapezoidal loads can be assumed as uniformly distributed over the beam span with some approximation techniques.
 - w: Uniformly distributed load per unit area
 - L: Span of beams
 - *x:* Maximum distance of loading to the desired beam
- α w: Equivalent load for **bending moment** calculations under the condition that the load is distributed over the total span of the beam with the maximum intensity at mid span.
- β w: Equivalent load for reaction and shear force calculations for conditions not satisfied above.

$$\alpha = 1 - \frac{1}{3} \left(\frac{2x}{L}\right)^2 \qquad \beta = 1 - \frac{x}{L}$$

Some tabulated values for ($lpha$ & eta)	
--	--

L/2x	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
α	0.667	0.725	0.769	0.803	0.830	0.853	0.870	0.885	0.897	0.908	0.917
β	0.5	0.544	0.583	0.615	0.642	0.667	0.688	0.706	0.722	0.737	0.75

Example (1) - D is known

For the floor plan shown, if $D = 3.4 \text{ kN/m}^2$ and $L = 2.4 \text{ kN/m}^2$, find the ultimate loads on

- Columns A4, B3, and C4
- Beams A1-B1, D1-D2, and A3-E3

Example (1) - Cont.
Example (2) - D is unknown

For the Floor plan shown, assuming $L = 2.4 \text{ kN/m}^2$, all slabs are 12 cm thick and:

- Concrete density (ρ_c) = 24 kN/m³
- Mechanical, Electrical, and Piping = 0.6 kN/m²
- Ceiling system = 0.35 kN/m²
- Roofing = 0.30 kN/m^2
- Flooring = 0.50 kN/m^2

Find loads on:

- Columns A4, B3, and C4
- Beams A1-B1, D1-D2, and A3-E3

Example (2) - Cont.

Example (3) - D is unknown + Wall

Calculate the ultimate load on the beam (C1-D1) shown in the figure assuming:

- Reinforced concrete (ρ_c) = 25 kN/m³
- Exterior wall (ρ_{ew})= 16.50 kN/m³

Example (3) - Cont.