

The Public Authority for Applied Education and Training

College of Technological Studies

Department of Civil Engineering Technology

(CE 161 / B 111) Engineering Statics

(Class Notes)

Compiled By: Dr. Mohammad S. Alshaiji

Last updated (Spring 2018)

Disclaimer:

This work is by no means the original work of Dr. Alshaiji. The material included in this class notes is merely a collection of examples and text copied directly from the original work by other authors. This package was compiled to serve as a supplement to the textbook required by the course syllabus.

Chapter (1): Units and Units System	1
1.1 Units of Measurements:	1
1.1.1 SI System of Units:	1
1.1.2 US Customary Units:	1
1.1.3 SI Units Prefixes:	2
1.2 Unit Conversion:	2
1.2.1 Examples:	
Chapter (2): Force Vectors	
2.1 Scalars and Vectors:	6
2.2 Vector Operations:	6
2.2.1 Multiplication and Division of a Vector by a Scalar:	6
2.2.2 Vector Addition:	7
2.2.3 Vector Subtraction:	
2.3 Forces as Vectors:	8
2.3.1 Lami's Theorem:	
2.3.2 Law of Cosines and Law of Sines:	g
2.3.3 Examples:	
2.4 Addition of a System of Coplanar Forces Using Scalar Notation:	
2.4.1 Using "Angles":	
2.4.2 Using "Slope":	
2.5 Resultant of Coplanar Forces:	
2.5.1 Examples:	
2.6 Problems:	
Chapter (3): Equilibrium of a Particle	
3.1 Condition for the Equilibrium of a Particle	
3.2 The Free–Body Diagram:	
3.2.1 Cables and Pulleys:	
3.2.2 Procedure for Drawing a Free–Body Diagram:	
3.3 Coplanar Force Systems:	
3.3.1 Examples:	21
3.4 Problems:	
Chapter (4): Force System Resultants	ን¤

4.1 Moment of a Force – Scalar Formulation:	2
4.1.1 Moment Magnitude, Direction, Sense of Rotation, & Resultant Moment:	2
4.1.2 Examples:	2
4.2 Moment of a Couple:	3
4.2.1 Scalar Formulation:	3
4.2.2 Examples:	3
4.3 Simplification of a Force and Couple System:	3
4.4 System of Forces and Couple Moments:	3
4.4.1 Examples:	3
4.5 Reduction of Distributed Loads:	3
4.6 Loading Types:	3
4.6.1 Examples:	3
4.7 Problems:	4
Chapter (5): Elementary Structural Analysis	4
5.1 Introduction:	4
5.2 Loading Types:	4
5.3 Support Types:	4
5.4 Beam Types:	4
5.5 Beam Reactions:	4
5.6 Sign Convention:	4
5.7 Examples:	4
5.8 Internal Forces in Structural Members:	5
5.8.1 Procedure for Analysis	5
5.9 Examples:	5
5.10 Problems:	5
Chapter (6): Truss Analysis	5
6.1 Introduction:	5
6.2 Assumptions for Analysis of Trusses:	6
6.3 Method of Joints:	6
6.3.1 Procedure for Analysis	6
6.3.2 Examples:	6
6.4 Method of Sections:	6
6.4.1 Procedure for Analysis:	6
6.5 Problems:	7
	7

7.1 Introduction:	72
7.2 Composite Shapes:	72
7.3 Procedure of Calculating Centroid Location:	73
7.4 Examples:	74
7.5 Problems:	77
Chapter (8): Useful Formulas	
8.1 Geometric Properties of Line and Area Elements:	78
8.2 Center of Gravity and Mass Moment of Inertia of Homogenous Solids:	
8.3 Fundamental Equations of Statics:	
8.4 SI Prefixes:	
8.5 Conversion Factors (FPS) to (SI)	
8.6 Conversion Factors (FPS):	
8.7 Conversion Factors Table:	
8.8 Cheat Sheet:	
Answers to Problems:	89
Glossary	

Chapter (1): Units and Units System

1.1 Units of Measurements:

Name	Length	Time	Mass	Force
International	meter	second	kilogram	newton*
System of Units SI	m	s	kg	$\binom{N}{\frac{kg \cdot m}{s^2}}$
U.S. Customary	foot	second	slug*	pound
FPS	ft	s	$\left(\frac{lb\cdot s^2}{ft}\right)$	lb
*Derived unit.				

Table 1–1: Systems of Units

- The four basic quantities length, time, mass, and force are not all independent from one another.
- They are related by Newton's second law of motion, $\mathbf{F} = \mathbf{ma}$.
- The equality $\mathbf{F} = \mathbf{ma}$ is maintained only if three of the four units, called base units, are defined and the fourth unit is then derived from the equation.

1.1.1 SI System of Units:

- As shown in Table 1–1, the SI system defines length in meters (m), time in seconds (s), and mass in kilograms (kg). The unit of force, called a newton (N), and it is derived from F = ma.
- If we define the weight as the "Force" of gravity, then the weight will have units of (N).
- If the mass of the object (m) is given along with the acceleration due to gravity (g), the weight of an object can be calculated by equation (1-1) as:

$$W = mg$$

(1 - 1)

Where, $g = 9.80665 \text{ m/s}^2$. From now on, we will set $g = 9.81 \text{ m/s}^2$.

1.1.2 US Customary Units:

- In the U.S. Customary system of units (FPS) length is measured in feet (ft), time in seconds (s), and force in pounds (lb) as in Table 1–1.
- The unit of mass, called a slug, is derived from F = ma.
- Hence, 1 slug is equal to the amount of matter accelerated at 1 ft/s² when acted upon by a force of 1 lb (slug = $lb-s^2/ft$).
- $g = 32.2 \text{ ft/s}^2$.

ETSA

1.1.3 SI Units Prefixes:

- When a numerical quantity is either very large or very small, the units used to define its size may be modified by using a prefix.
- Some of the prefixes used in the SI system are shown in Table 1–2.
- Each represents a multiple or submultiple of a unit which, if applied successively, moves the decimal point of a numerical quantity to every third place.
- For example, 4000000 N = 4000 kN (kilo–newton) = 4 MN (mega–newton), or 0.005 m = 5 mm (milli–meter).

Prefix	Symbol	Value	Scientific Notation
exa-	\mathbf{E}	1,000,000,000,000,000,000	10^{18}
peta-	Р	1,000,000,000,000,000	10^{15}
tera-	Т	1,000,000,000,000	10^{12}
giga-	G	1,000,000,000	109
mega-	\mathbf{M}	1,000,000	106
kilo–	k	1,000	10^{3}
hecto-	\mathbf{h}	100	10^{2}
deka-	da	10	10^{1}
-	-		
deci-	d	0.1	10^{-1}
centi	с	0.01	10^{-2}
milli–	m	0.001	10^{-3}
micro-	μ	0.000 001	10^{-6}
nano-	n	0.000 000 001	10^{-9}
pico-	р	0.000 000 000 001	10^{-12}
femto-	\mathbf{f}	0.000 000 000 000 001	10^{-15}
atto-	a	0.000 000 000 000 000 001	10^{-18}

The Prefixes Used with SI Units

Table 1–2: SI Units Prefixes

1.2 Unit Conversion:

	Units of	Units of	
$\mathbf{Quantity}$	Measurements (FPS)	\mathbf{Equals}	Measurements (FPS)
Force	lb		4.448 N
Mass	slug		$14.59 \mathrm{~kg}$
Length	${ m ft}$		$0.3048~\mathrm{m}$
	T 11 1 2 C	· D	

Table 1–3: Conversion Factors

Table 1–3 provides a set of direct conversion factors between FPS and SI units for the basic quantities. Also, in the FPS system, recall that 1 ft = 12 in. (inches), 5280 ft = 1 mi (mile), 1000 lb = 1 kip (kilo-pound), and 2000 lb = 1 ton.

CTSA

Technologica	al Studi	es	D Eng	epartmen ineering	nt of C Techn	ıvil olog	у		Eng	E 101 gineeri	ng Sta	atics	_
2 1 Evennles													
Example (1):								_					
	Repr the c (b) N	esent e orrect S Ig/mN,	ach of t I form u and (c)	he follow 1sing an a MN/(kg∙	ving con ppropri ms).	ıbina ate j	ation prefix	s of :: (a)	units kN/µ	in .s,			
Solution:													
							\wedge						
													E
													-
											-		
													E
T 1 / A \													
Example (2):													
Example (2):	Repr SI fo	resent e orm usi	ach of thing an a	he follow	ing qua te pref	ntiti ix: (es in a) 0.	the 0.000	correc 431 l	t g,			
Example (2):	Repr SI fc (b) 3	resent e orm usi 5.3(10 ³)	ach of thing an a N, and	he follow appropria (c) 0.005	ing qua te pref 32 km.	ntiti ix: (es in a) 0.	the 0.000	correc 431 I	t .g,			
Example (2): Solution:	Repr SI fc (b) 3	esent e orm usi 5.3(10 ³)	ach of thing an a	he follow appropria (c) 0.005	ing qua te pref 32 km.	ntiti ix: (es in a) 0.	the 0.000	correc 431 I	et eg,			E
Example (2): Solution:	Repr SI fc (b) 3	esent e orm usi 5.3(10 ³)	ach of thing an a	he follow appropria (c) 0.005	ing qua te pref 32 km.	ntiti ix: (es in a) 0.	the 0.000	431 H	et Eg,			E
Example (2): Solution:	Repi SI fc (b) 3	resent e orm usi 5.3(10 ³)	ach of thing an a	he follow appropria (c) 0.005	ing qua te pref 32 km.	ntiti	es in a) 0.	the 0.000	431 H	eg,			E
Example (2): Solution:	Repi SI fc (b) 3	resent e orm usi 5.3(10 ³)	ach of the second secon	he follow appropria (c) 0.005	ing qua te pref 32 km.	ntiti	es in a) 0.	the 6 .000	431 H	g,			E
Example (2): Solution:	Repi SI fc (b) 3	resent e orm usi 5.3(10 ³)	ach of the function of the fun	he follow appropria (c) 0.005	ing qua te pref 32 km.	ntiti ix: (es in a) 0.	the 4	431 H	eg,			
Example (2): Solution:	Repi SI fc (b) 3	resent e orm usi 5.3(10 ³)	ach of the second secon	he follow appropria (c) 0.005	ing qua te pref 32 km.	ntitii ix: (es in a) 0.	the 6 .000					
Example (2): Solution:	Repi SI fc (b) 3	resent e orm usi 5.3(10 ³)	ach of the second secon	he follow appropria (c) 0.005	ing qua te pref 32 km.	ntitii ix: (es in a) 0.	the 6 .000					
Example (2): Solution:	Repi SI fc (b) 3	resent e orm usi 5.3(10 ³)	ach of the second secon	he follow appropria (c) 0.005	ing qua te pref 32 km.	ntitii ix: (es in a) 0.	the 6 .000					
Example (2): Solution:	Repi SI fc (b) 3	resent e orm usi 5.3(10 ³)	ach of the second secon	he follow appropria (c) 0.005	ing qua te pref 32 km.	ntitii ix: (es in a) 0.						
Example (2): Solution:	Repi SI fc (b) 3	resent e orm usi 5.3(10 ³)	ach of the second secon	he follow appropria (c) 0.005	ing qua te pref 32 km.	ntitii ix: (es in a) 0.						
Example (2): Solution:	Repi SI fc (b) 3	resent e orm usi 5.3(10 ³)	ach of the second secon	he follow appropria (c) 0.005	ing qua te pref 32 km.	ntitii ix: (es in a) 0.						

CTS A CHARACTER OF THE STATE

College of	
Technological Studies	

CE 161 / B 111 Engineering Statics

Example (3):

Convert 2 km/h to m/s How many ft/s is this?

Solution:	B						4					E
	B						4					E
	B						4	A				E
-	B						4	A				E
xample (4):							Λ	λ				
xample (4):	If a car kilomete	is tra ers per	iveling hour a	at 55 and met	mi/h, ers per	dete seco	rmine ond.	its sp	beed	in		E
xample (4): Solution:	If a car kilomete	is tra ers per	iveling hour a	at 55 and met	mi/h, ers per	dete seco	rmine ond.	its sp	beed	in		E
kample (4):	If a car kilomete	is tra ers per	hour a	at 55 and met	mi/h, ers per	dete seco	rmine ond.	its sp	beed	in		
xample (4):		is tra ers per		at 55 and met	mi/h, ers per		rmine ond.	its sp	beed	in		E

CTSA

Technolog	ical Studi	les	Eng	ineering	Techno	logy		En	ginee	ring 5	tatics	_
Example (5).												
Example (0).									- 2			
	The Dete	specifi ermine	c weig its den	ht (wt./v sitv (mas	ol.) of s/vol.) i	brass n SL-1	is 5. mits.	20 lb/ Use	ft ³ . an			
	appr	opriate	prefix.									
Solution												
		_										
Example (0):												
	Conver	t each o	of the fo	ollowing \cdot (a) 175	and exp	ress th	e^{3} (b	wer	using /h_to			
	mm/s, a	and (c)	835 lb	•ft to kN	10/10 to $10/10$ to	, KI	1,(0) 0 11	/ 11 10			
Solution												
Solution:												
Solution:												
Solution:	B				Þ						Ē	
Solution:	B				P							
Solution:	B											E
Solution:	B											
Solution:	B											
Solution:	B											
Solution:												E

Department of Civil Engineering Technology

CE 161 / B 111 Engineering Statics

ogy Engineering

Chapter (2): Force Vectors

2.1 Scalars and Vectors:

Scalar:

- A scalar is any positive or negative physical quantity that can be completely specified by its magnitude.
- Examples of scalar quantities include length, mass, and time.

Vector:

- A vector is any physical quantity that requires both a magnitude and a direction for its complete description.
- Examples of vectors encountered in statics are force, position, and moment.
- A vector is shown graphically by an arrow.
 - \circ $\,$ The length of the arrow represents the magnitude of the vector
 - The angle θ between the vector and a fixed axis defines the direction of its line of action.
 - \circ $\,$ The head or tip of the arrow indicates the sense of direction of the vector.

Figure 2–1: Elements of a vector

2.2 Vector Operations:

2.2.1 Multiplication and Division of a Vector by a Scalar:

- If a vector is multiplied by a positive scalar, its magnitude is increased by that amount.
- Multiplying by a negative scalar will also change the directional sense of the vector. Graphic examples of these operations are shown in Figure 2–2.

Figure 2–2: Multiplication and Division of a Vector by a Scalar

CE 161 / B 111 Engineering Statics

2.2.2 Vector Addition:

Parallelogram Method: (Tail-to-Tail)

All vector quantities obey the parallelogram law of addition. To illustrate, the two "component" vectors **A** and **B** in (Figure 2–3a) are added to form a "resultant" vector **R**. Where **R** can be expressed as:

$$\vec{R} = \vec{A} + \vec{B} \tag{2-1}$$

Using the following procedure:

- First join the tails of the components at a point to make them concurrent, Figure 2–3b.
- From the head of B, draw a line parallel to A. Draw another line from the head of A that is parallel to B. These two lines intersect at point P to form the adjacent sides of a parallelogram.
- The diagonal of this parallelogram that extends to P forms R, which then represents the resultant vector R = A + B, Figure 2–3c.

Figure 2–3: Vector Addition

Triangular Method: (Head -to -Tail)

- We can also add B to A, Figure 2–4a, using the triangle rule, which is a special case of the parallelogram law, whereby vector B is added to vector A in a "head-to-tail" fashion Figure 2–4b.
- The resultant R extends from the tail of A to the head of B.
- In a similar manner, R can also be obtained by adding A to B, Figure 2–4c.
- By comparison, it is seen that vector addition is commutative; in other words, the vectors can be added in either order, i.e., $\mathbf{R} = \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$.

GIVA

Figure 2–4: Triangular Method

2.2.3 Vector Subtraction:

The resultant of the difference between two vectors A and B of the same type may be expressed as:

$$\vec{R} = \vec{A} - \vec{B} = \vec{A} + \left(-\vec{B}\right) \tag{2-2}$$

This vector sum is shown graphically in Figure 2–5. Subtraction is therefore defined as a special case of addition, so the rules of vector addition also apply to vector subtraction.

2.3 Forces as Vectors:

- Forces can be fully expressed with *magnitude* and *direction*. Hence, they are vectors.
- As a result, the rules discussed in section (2.2) can be applied.
- Not only resultants can be found by adding forces, a resultant force can be resolved into components as well.
- Basically, we "work backwards" from the *Parallelogram law of addition* or the *triangle rule of addition* to resolve the resultant force vector into components along a two axes to components as in Figure 2–6.

Figure 2–6: Resolving Vectors Into Components

Note:

Solving for resultant vector or resolving one will transfer the problem from vector addition (or subtraction) into **"Trigonometry"**. Therefore, a knowledge of such subject is a necessity in solving problems.

2.3.1 Lami's Theorem:

Lami's theorem states that "if a body is in equilibrium under the action forces, then each force is proportional to the sin of the angle between the other two forces". Based on Figure 2–7,

$$\frac{\vec{F}_1}{\sin(\alpha)} = \frac{\vec{F}_2}{\sin(\beta)} = \frac{\vec{F}_3}{\sin(\gamma)}$$
(2-3)

Figure 2–7: Lami's Theorem

β

 F_3

2.3.2 Law of Cosines and Law of Sines:

Two important trigonometric laws should be presented here; the Law of Cosines and the Law of Sines. Referring to Figure 2–8:

Law of Sines:

$$\frac{A}{\sin(a)} = \frac{B}{\sin(b)} = \frac{C}{\sin(c)}$$
(2-4)

Law of Cosines:

$$C = \sqrt{A^2 + B^2 - 2AB\cos(c)}$$
(2-5)

Figure 2–8: Law of Sines and Law of Cosines Lengths and Angles

CE 161 / B 111 Engineering Statics

2.3.3 Examples:

Example (1):

Resolve the force \mathbf{F}_1 into components acting along the u and v axes and determine the magnitudes of the components.

ETSA

45°

 $F_2 = 375 \, \text{lb}$

Department of Civil Engineering Technology CE 161 / B 111 Engineering Statics

Example (3):

If the magnitude of the resultant force is to be 500 N, directed along the positive y axis, determine the magnitude of force \mathbf{F} and its direction θ .

ETSA

CE 161 / B 111 Engineering Statics

Example (5):

CTSA

2.4 Addition of a System of Coplanar Forces Using Scalar Notation:

2.4.1 Using "Angles":

Referring to Figure (1.9), a vector \mathbf{F} can be resolved into two rectangular components $\mathbf{F}_{\mathbf{x}}$ and $\mathbf{F}_{\mathbf{y}}$ using the parallelogram law so that $\mathbf{F} = \mathbf{F}_{\mathbf{x}} + \mathbf{F}_{\mathbf{y}}$.

F_y F_y F_x

Figure 2–9: Resolving a Vector Into Components Using Angles

With the aid of the angle θ , the components of the vector **F** can be presented as:

$$F_{x} = F \cos(\theta)$$

$$F_{y} = F \sin(\theta)$$
(2-6)

2.4.2 Using "Slope":

The direction of **F** can also be defined using a "slope" triangle as shown in Figure 2–10.

Figure 2–10: Resolving a Vector Into Components Using Slope

Using the slope, the components of the vector \mathbf{F} can be presented as:

$$F_{x} = F\left(\frac{a}{c}\right)$$

$$F_{y} = -F\left(\frac{b}{c}\right)$$

$$(2-7)$$

2.5 Resultant of Coplanar Forces:

We can represent the components of the resultant force of any number of coplanar forces symbolically by the algebraic sum of the x and y components of all the forces

$$(F_R)_x = \sum F_x$$

$$(F_R)_y = \sum F_y$$

$$(2-8)$$

ETSA VII

To illustrate, let us try to obtain the resultant force of multiple concurrent forces as shown in Figure 2–11a using the Cartesian vector notation. Each force is first represented as a Cartesian vector as presented in Figure 2–1b:

Figure 2–11: (a) Three concurrent forces, (b) x and y components of concurrent forces, (c) Finding F_R from $(F_R)_x$ and $(F_R)_y$

When $(F_R)_x$ and $(F_R)_y$ are determined, we use Pythagorean theorem to determine the magnitude of F_R , as shown in Figure 2–11c.

$$F_{R} = \sqrt{\left(F_{R}\right)_{x}^{2} + \left(F_{R}\right)_{y}^{2}}$$
(2-9)

The angle that specifies the direction of F_R can be calculated from trigonometry as:

$$\theta = \tan^{-1} \left| \frac{\left(F_R\right)_x}{\left(F_R\right)_y} \right| \tag{2-10}$$

Dr. Alshaiji
$$\mathbbm{C}$$

CE 161 / B 111 Engineering Statics

2.5.1 Examples:

Example (1):

If the magnitude of the resultant force acting on the eyebolt is 600 N and its direction measured clockwise from the positive x axis is $\theta = 30^{\circ}$, determine the magnitude of \mathbf{F}_1 and the angle ϕ .

Department of Civil Engineering Technology CE 161 / B 111 Engineering Statics

Example (2):

Determine the magnitude of the resultant force and its direction measured counterclockwise from the positive *x* axis.

ETSA IVIL

Department of Civil Engineering Technology

CE 161 / B 111 Engineering Statics

Example (3):

ETSA

CE 161 / B 111 Engineering Statics

/ B 111 ng Statics

2.6 Problems:

Question (2.1)

Two forces are applied at point B of beam AB. Determine graphically the magnitude and direction of their resultant.

A stake is being pulled out of the ground by means of two ropes as shown.

Knowing that $\alpha=30^\circ,$ determine by trigonometry

(a) The magnitude of the force P so that the resultant force exerted on the stake is vertical(b) The corresponding magnitude of the resultant.

Determine the x and y components of each of the forces shown.

Determine the x and y components of each of the forces shown.

Question (2.5)

Determine the resultant of the three forces of (2, c)

Knowing that $\alpha = 75^{\circ}$, determine the resultant of the three forces shown.

Chapter (3): Equilibrium of a Particle

3.1 Condition for the Equilibrium of a Particle

- A particle is said to be in equilibrium if it remains at rest if originally at rest, or has a constant velocity if originally in motion.
- Static equilibrium is used to describe an object at rest.
- To maintain equilibrium, it is necessary to satisfy Newton's first law of motion, which requires the resultant force acting on a particle to be equal to zero. This condition may be stated mathematically as:

$$\sum F = 0 \tag{3-1}$$

Where $\sum F$ is the vector sum of all the forces acting on the particle.

3.2 The Free–Body Diagram:

- To apply the equation of equilibrium, we must account for all the known and unknown forces which act on the particle.
- The best way to do this is to think of the particle as isolated and "free" from its surroundings.
- A drawing that shows the particle with all the forces that act on it is called a free–body diagram (FBD).

3.2.1 Cables and Pulleys:

- Unless otherwise stated, all cables (or cords) will be assumed to have negligible weight and they cannot stretch.
- Also, a cable can support only a tension or "pulling" force, and this force always acts in the direction of the cable.
- For any angle θ, shown in Figure 3-1, the cable is subjected to a constant tension T throughout its length.

Figure 3–1: Cable is in Tension

ETSA VII

CE 161 / B 111 Engineering Statics

3.2.2 Procedure for Drawing a Free–Body Diagram:

- Draw Outlined Shape.
 - Imagine the particle to be isolated or cut "free" from its surroundings by drawing its outlined shape.
- Show All Forces.
 - $\circ~$ Indicate on this sketch all the forces that act on the particle.
 - These forces can be active forces, which tend to set the particle in motion, or they can be reactive forces which are the result of the constraints or supports that tend to prevent motion.
- Identify Each Force.
 - The forces that are known should be labeled with their proper magnitudes and directions.
 - Letters are used to represent the magnitudes and directions of forces that are unknown.

3.3 Coplanar Force Systems:

- If a particle is subjected to a system of coplanar forces that lie in the *x*-*y* plane, as in Figure 3–2, then each force can be resolved into its perpendicular components.
- For equilibrium, these forces must sum to produce a zero force resultant, i.e.,

$$\sum F_x = 0 \tag{3-2}$$

$$\sum F_y = 0$$

These two equations can be solved for at most two unknowns, generally represented as angles (or slopes) and magnitudes of forces shown on the particle's free–body diagram.

Figure 3–2: System of Coplanar Vectors Acting on a Particle

5 kN

7 kN

CE 161 / B 111 Engineering Statics

3.3.1 Examples:

Example (1):

The members of a truss are pin connected at joint O. Determine the magnitudes of F_1 and F_2 for equilibrium. Set $\theta = 60^{\circ}$.

Solution:

Example (2):

The members of a truss are connected to the gusset plate. If the forces are concurrent at point O, determine the magnitudes of **F** and **T** for equilibrium. Take $\theta = 30^{\circ}$.

CTS A				01
Solution:				
		1 1	l.	1 1

Dr. Alshaiji $\mathbb C$

CE 161 / B 111 Department of Civil College of **Engineering Statics** Engineering Technology Technological Studies Example (3): The gusset plate is subjected to the forces of four members. Determine the force in member B and its proper orientation θ for equilibrium. The forces are concurrent at point O. Take F = 12 kN. 8 kN Solution: 5 kN C Ans. Example (4): Determine the tension developed in wires CA and CBrequired for equilibrium of the 10-kg cylinder. Take $\theta = 40^{\circ}$. 307 Solution: θ C

ETSA VII

CE 161 / B 111 Engineering Statics

Example (5):

when the sprin	n.		400 mm			
Solution:	P				A k = 800 N/m	
						300 mm
	\mathbf{H}					
					•500 mm•	←400 mm
_						
-					AAI	
					Λ	
					AA	

CE 161 / B 111 **Engineering Statics**

3.4 Problems:

Question (3.1)

Two cables are tied together at C and are loaded as shown. Determine the tension in cables ACand BC.

Knowing that $\alpha = 20^{\circ}$, determine the tension in cables AC and BC.

Question (3.3)

(a) Determine the stretched length in springs ACand AB for equilibrium of the 2-kg block. (b) The un-stretched length of spring AB is 3 m. If the block is held in the equilibrium position shown, determine the mass of the block at D.

Determine the magnitude R of F_1 and F_2 for equilibrium. Set $\theta = 60^{\circ}$.

Two cables are tied together at C and loaded as shown. Knowing that P = 360 N, determine the tension in cables AC and BC.

Question (3.6)

Two cables tied together at C are loaded as shown. Knowing that the maximum allowable tension in each cable is 800 N, determine: (a) the magnitude of the largest force \mathbf{P} that can be applied at C.

(b) the corresponding value of α .

Chapter (4): Force System Resultants

4.1 Moment of a Force – Scalar Formulation:

- When a force is applied to a body it will produce a tendency for the body to rotate about a point that is not on the line of action of the force.
- This tendency to rotate is sometimes called a torque, but most often it is called the **moment of a force** or simply the **moment**.

Figure 4–1: Force and Moment Arms

For example, consider a wrench used to unscrew the bolt in Figure 4–1.

- If a force is applied to the handle of the wrench it will tend to turn the bolt about point O (or the z axis).
- The magnitude of the moment is directly proportional to the magnitude of \mathbf{F} and the perpendicular distance or moment arm d.
- The larger the force or the longer the moment arm, the greater the moment or turning effect.
- Note that if the force F is applied at an angle θ that is not 90 degrees, Figure 4–1b, then it will be more difficult to turn the bolt since the moment arm d' = d sin (θ) will be smaller than d.
- If **F** is applied along the wrench, Figure 4–1c, its **moment arm will be zero** since the line of action of **F** will **intersect point** *O* (the *z* axis). As a result, the moment of **F** about O is also zero and no turning can occur.

4.1.1 Moment Magnitude, Direction, Sense of Rotation, & Resultant Moment:

Magnitude:

The magnitude of M_0 is expressed as:

 $M_o = Fd$

(4-1)

where d is the moment arm or **perpendicular distance** from the axis at point O to the line of action of the force. Units of moment magnitude consist of **force times distance** (N-m or lb-ft).

Direction & Sense of Rotation:

• The direction of M_O is defined by its moment axis, which is perpendicular to the plane that contains the force **F** and its moment arm d.

26

- The right-hand rule is used to establish the sense of direction of M_o .
- According to this rule, the natural curl of the fingers of the right hand, as they are drawn towards the palm, represent the rotation, or if no movement is possible, there is a tendency for rotation caused by the moment.
- As this action is performed, the thumb of the right hand will give the directional sense of Mo, Figure 4–2a.
- Notice that the moment vector is represented three–dimensionally by a curl around an arrow.
- In two dimensions this vector is represented only by the curl as in Figure 4–2b.
- Since in this case the moment will tend to cause a counterclockwise rotation, the moment vector is actually directed out of the page.

ETSA

Resultant Moment:

- For two-dimensional problems, where all the forces lie within the x-y plane, Figure 4-3, the resultant moment $(M_R)_O$ about point O can be determined by finding the algebraic sum of the moments caused by all the forces in the system.
- As a convention, we will generally consider positive moments as counterclockwise since they are directed along the positive z axis (out of the page) and **Clockwise** moments will be negative.
- Using this sign convention, the resultant moment in Figure 4–3 is therefore:

$$(M_R)_O = F_1 d_1 - F_2 d_2 + F_3 d_3$$

If the numerical result of this sum is a **positive** scalar, $(M_R)_O$ will be a **counterclockwise** moment (out of the page); and if the result is **negative**, $(M_R)_O$ will be a **clockwise** moment (into the page).

Department of Civil Engineering Technology CE 161 / B 111 Engineering Statics

4.1.2 Examples:

Example (1):

For each case illustrated in Fig. 4–4, determine the moment of the force about point O.

ETSA

Department of Civil Engineering Technology

CE 161 / B 111 Engineering Statics

 $F_2 = 500 \, \text{lb}$

 $F_1 = 375 \text{ lb}$

Example (2):

Determine the moment about point A of each of the three forces acting on the beam.

Example (3):

Solution:

The crane can be adjusted for any angle $0^{\circ} \le \theta \le 90^{\circ}$ and any extension $0 \le x \le 5$ m. For a suspended mass of 120 kg, determine the moment developed at A as a function of x and θ . What values of both x and θ develop the maximum possible moment at A? Compute this moment. Neglect the size of the pulley at B.

CTSA

Department of Civil Engineering Technology

CE 161 / B 111 Engineering Statics

Example (4):

Determine the n point A.	noment of each	of the three forces about	$F_1 = 250 \text{ N} \frac{30^\circ}{4}$	$F_2 = 300 \text{ N}$
Solution:				
		44 6	ΞΛΛΕ	
				$F_{4} = 5$ $F_{3} = 500 \text{ N}$
		111		
	21	111		TR
		-414 FE		TR
Example (5):				

The towline exerts a force of P = 4 kN at the end of the 20-m-long crane boom. If $\theta = 30^{\circ}$, determine the placement x of the hook at A so that this force creates a maximum moment about point O. What is this moment?

Solution:

ETSA

CE 161 / B 111 **Engineering Statics**

(4-2)

4.2 Moment of a Couple:

- A couple is defined as two **parallel** forces that have the **same magnitude**, but opposite directions, and are separated by a perpendicular distance d, Figure 4-4.
- Since the resultant force is zero, the only effect of a couple is to produce an actual rotation, or if no movement is possible.

Figure 4–4: Moment of a Couple

4.2.1 Scalar Formulation:

The moment of a couple, M, Figure 4–4, is defined as having a magnitude of

$$M = Fd$$

- F is the magnitude of one of the forces and d is the **perpendicular distance** or moment arm between the forces.
- The direction and sense of the couple moment are determined by the right-hand rule, where the thumb indicates this direction when the fingers are curled with the sense of rotation caused by the couple forces.
- In all cases, M will act perpendicular to the plane containing these forces.

4.2.2 Examples:

Example (1):

 $= 200 \, lb$ Determine the resultant couple moment of the three couples acting $F_3 = 300 \, \text{lb}$ on the plate in Fig. 4-30. = 4 ft $= 450 \, lb$ 5 ft Solution: $d_2 = 3 \, \text{ft}$ $F_2 = 450 \, \text{lb}$ $F_1 = 200 \, \text{lb}$ $F_3 = 300 \, \text{lb}$ Fig. 4-30 **E**TSA IVIL Dr. Alshaiji ©
CE 161 / B 111 Engineering Statics

Example (2):

A twist of $4 \text{ N} \cdot \text{m}$ is applied to the handle of the screwdriver. Resolve this couple moment into a pair of couple forces **F** exerted on the handle and **P** exerted on the blade.

Solution:

P P S mm F F F A N·m A

100 N

► 600 N

600 N

Example (3):

The ends of the triangular plate are subjected to three couples. Determine the plate dimension d so that the resultant couple is 350 N \cdot m clockwise.

Solution:

d 100 N 30° 200 N 200 N 200 N

Example (4):

Two couples act on the beam. If F = 125 lb, determine the resultant couple moment.

Solution:

CTSA

Dr. Alshaiji ©

Department of Civil Engineering Technology

CE 161 / B 111 Engineering Statics

Example (5):

If the valve can be opened with a couple moment of $25 \text{ N} \cdot \text{m}$, determine the required magnitude of each couple force which must be applied to the wheel.

Solution:

Example (6):

Determine the required magnitude of force \mathbf{F} if the resultant couple moment on the frame is 200 lb \cdot ft, clockwise.

Solution:

 $\begin{array}{c} -2 \text{ ft} \\ -2 \text{ ft} \\ -4 \text{ ft} \\ -2 \text{ ft} \\$

CTSA

130°

150 lb

4.3 Simplification of a Force and Couple System:

- Sometimes it is **convenient to reduce a system** of forces and couple moments acting on a body to a simpler form by replacing it with an **equivalent system**, **consisting of a single resultant force acting at a specific point and a resultant couple moment**.
- A system is equivalent if the external effects it produces on a body are the same as those caused by the original force and couple moment system.
- In this context, the external effects of a system refer to the translating and rotating motion of the body if the body is free to move, or it refers to the reactive forces at the supports if the body is held fixed.
- This demonstrates the principle of transmissibility, which states that a force acting on a body (stick) is a sliding vector since it can be applied at any point along its line of action.
- If the force is to be moved NOT along the line of action, it can be moved provided a couple moment M is added to maintain equivalent system.

4.4 System of Forces and Couple Moments:

A system of several forces and couple moments acting on a body can be reduced to an equivalent single resultant force acting at a point O and a resultant couple moment.

$$(F_R)_x = \sum F_x$$

$$(F_R)_y = \sum F_y$$

$$(M_R)_0 = \sum M_0 + \sum M$$
(4-3)

- The first and second equations states that the resultant force of the system is equivalent to the sum of all the forces
- The third equation states that the resultant couple moment of the system is equivalent to the sum of all the couple moments $\sum M$ plus the moments of all the forces $\sum M_o$ about point O.

CE 161 / B 111 Engineering Statics

🖊 3 kN

30°

4.4.1 Examples:

Example (1):

Replace the force and couple system shown in Fig. 4-37a by an equivalent resultant force and couple moment acting at point O.

Department of Civil Engineering Technology

CE 161 / B 111 Engineering Statics

Example (2):

and couple m	noment at po	int <i>O</i> .	in by an	equivalei	$8 \text{ kN} \cdot \text{m}$ O P
Solution:					$6 \text{ kN} \qquad 4 \text{ m} \qquad x \qquad $
	R				3 m $13 12$ 60°
	B				PAAETB
	В				PAAEIB
Example (3):	В				'PAAL'I'B

Replace the force system acting on the beam by an equivalent force and couple moment at point *A*.

Solution:

ETSA

Dr. Alshaiji ©

C	ollege of	
Techno	logical Studies	

CE 161 / B 111 Engineering Statics

Example (4):

	-pro momo								15	× 1.0U
	R.							150 lb		1
olution:								3	5	2 ft
										2 ft
	FK									200
										2 ft
									0-88	
										1 and a start of the start of t
		_					_			
		_								
Example (5): Replace the two couple moments	wo forces by	an equiv $rac{1}{2}$. Set $F =$	valent re = 20 lb.	sultant for	ce and	A	, ,	L	20 lb	F
Example (5): Replace the two couple moments colution:	wo forces by nt at point <i>O</i>	an equiv 2. Set F =	valent re = 20 lb.	sultant for	ce and				20 lb	F 2000 4 3
Example (5): Replace the two couple moments colution:	wo forces by nt at point <i>O</i>	an equiv 2. Set F =	valent re = 20 lb.	sultant for	ce and			6 in.	20 lb 30°	F 2000 4 3
Example (5): Replace the two couple moments colution:	wo forces by nt at point <i>C</i>	an equiv D. Set F =	valent re = 20 lb.	sultant for	ce and			6 in. 40°	²⁰ lb ^{30°} 1.5 in.	5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Example (5): Replace the two couple moments olution:	wo forces by nt at point <i>C</i>	an equiv D. Set F =	valent re = 20 lb.	sultant fore	ce and			6 in.	²⁰ lb 30° 1.5 in.	F 2 4 3 x
Example (5): Replace the two couple moments olution:	wo forces by nt at point <i>C</i>	an equiv D. Set F =	valent re = 20 lb.	sultant fore	ce and			6 in.	20 lb 30° 1.5 in.	F 4 ³
Example (5): Replace the two couple moments olution:	wo forces by nt at point <i>C</i>	an equiv). Set F =	valent re = 20 lb.	sultant for	ce and		, 2 in	6 in.	²⁰ lb 30° 1.5 in.	F A X
Example (5): Replace the two couple moments olution:	wo forces by nt at point <i>C</i>	an equiv D. Set F =	valent re = 20 lb.	sultant for	ce and		-2 in	6 in.	20 lb 30° 1.5 in.	x
Example (5): Replace the two couple moments olution:	wo forces by nt at point <i>C</i>	an equiv 2. Set F =	valent re = 20 lb.	sultant for			- 2 in	6 in.	20 lb 30°	x
Example (5): Replace the two couple moments olution:	wo forces by nt at point <i>C</i>	an equiv 2. Set <i>F</i> =	valent re = 20 lb.	sultant for			+ 2 in.+	6 in.	20 lb 30° 1.5 in.	F 2000 4 3 x
ample (5): Replace the two couple moments olution:	wo forces by nt at point <i>C</i>	an equiv 2. Set <i>F</i> =	valent re = 20 lb.	sultant for			-2 in	6 in.	20 lb 30° 1.5 in.	x
Example (5): Replace the two couple moments olution:	wo forces by nt at point <i>C</i>	an equiv 2. Set <i>F</i> =	valent re = 20 lb.	sultant for				6 in.	20 lb 30° 1.5 in.	x
Example (5): Replace the two couple moments olution:	wo forces by nt at point <i>C</i>	an equiv . Set <i>F</i> =	valent re = 20 lb.	sultant for				6 in. 40°	20 lb 30° 1.5 in.	x
Example (5): Replace the two couple moments olution:	wo forces by nt at point <i>C</i>	an equiv). Set <i>F</i> =	valent re = 20 lb.	sultant for			2 in	6 in.	20 lb 30° 1.5 in.	F
Example (5): Replace the two couple moments olution:	wo forces by nt at point <i>C</i>	an equiv 2. Set <i>F</i> =	valent re = 20 lb.	sultant fore			-2 in	6 in.	20 lb 30° 1.5 in.	F 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4

4.5 Reduction of Distributed Loads:4.6 Loading Types:

The loading on beams and frames can be categorized to (Figure 4–5):

- Concentrated Load
 - Concentrated Force
 - o Concentrated Moment
- Distributed Load
 - Uniformly Distributed Load (UDL)
 - Linearly Varying Distributed Load (LVDU)

Figure 4–5: Loading On Beams

- When the above loading types are combined on a single structure, **they can be reduced single concentrated force** (**equivalent**) that will produce the same internal reactions as if the original loading was applied on the structure.
- The distributed loads shown in Figure 4–5, can be reduced to concentrated forces with a magnitude equal to area under the loading diagram.
- The line of action of this concentrated force passes through the geometric center of the area under the loading diagram. (L/2 for rectangular load, L/3 for triangular load from the higher value of the triangle)

CTSA

CE 161 / B 111 Engineering Statics

4.6.1 Examples:

Example (1):

The loading on the bookshelf is distributed as shown. Determine the magnitude of the equivalent resultant location, measured from point O.

Solution:	
-----------	--

3 kN/m

Example (2):

Replace the distributed loading with an equivalent resultant force, and specify its location on the beam measured from point O.

Solution:

Example (3):

Replace the loading by an equivalent force and couple moment acting at point *O*.

Solution:

Department of Civil Engineering Technology

CE 161 / B 111 Engineering Statics

800 lb/ft

Example (4):

Replace the loading by an equivalent resultant force and specify its location on the beam, measured from point *B*.

Solution:

Example (5):

The beam is subjected to the distributed loading. Determine the length b of the uniform load and its position a on the beam such that the resultant force and couple moment acting on the beam are zero.

Solution:

ETSA IVIL

Dr. Alshaiji \mathbbm{C}

CE 161 / B 111 Engineering Statics

3 111 Statics

4.7 Problems:

Question (4.1)

(a) A 20-lb force is applied to the control rod AB as shown. Knowing that the length of the rod is 9 in. and that $\alpha = 25^{\circ}$, determine the moment of the force about Point B.

(b) If the moment of the 20-lb force about B is 120 lb \cdot in. clockwise, determine the value of α .

Question (4.2)

The handle of the hammer is subjected to the force of F = 20 lb. Determine the moment of this force about the point A.

Question (4.3)

The moment exerted about point E by the weight is 299 in-lb. What moment does the weight exert about point S?

Question (4.4)

A plate in the shape of a parallelogram is acted upon by two couples. Determine:

(a) the moment of the couple formed by the two 21-lb forces

(b) the perpendicular distance between the 12-lb forces if the resultant of the two couples is zero (c) the value of α if the resultant couple is 72 lb·in. clockwise and d is 42 in.

Determine the sum of the moments about point O by the couple and the 500 lb force.

Question (4.6)

Two couples act on the beam as shown. Determine the magnitude of **F** so that the resultant couple moment is 300 lb-ft counterclockwise. Where on the beam does the resultant couple act?

Chapter (5): Elementary Structural Analysis

5.1 Introduction:

Structural analysis can be defined as the process of finding internal forces developed in structural members (such as beams, frames, trusses, columns, cables, etc.) due to external applied loads. The determination of such loads will aid the design process of the structure. In this chapter, we will start with loads on structural beams.

5.2 Loading Types:

The loading on beam and frames can be categorized to (Figure 5-1):

- Concentrated Load
 - Concentrated Force
 - o Concentrated Moment
- Distributed Load
 - Uniformly Distributed Load (UDL)
 - Linearly Varying Distributed Load (LVDU)

CTSA

5.3 Support Types:

Supports on beams transfer the loads to the following structural member (usually a column) Three major types (Figure 5–2):

- Roller \rightarrow Vertical reaction only
- Hinge \rightarrow Vertical and horizontal reaction
- Fixed \rightarrow Vertical and horizontal reaction + a bending moment

Figure 5–2: Beam Reaction Types

Department of Civil Engineering Technology

MODELING THE ACTION OF FORCES II	N TWO-DIMENSIONAL ANALYSIS (cont.)				
Type of Contact and Force Origin	Action on Body to Be Isolated				
6. Pin connection	Pin free to turn R_x R_y R_z Pin not free to turn R_x R_y R				
7. Built-in or fixed support	$F = \begin{bmatrix} A \\ M \\ V \end{bmatrix}$ $K = \begin{bmatrix} A \\ M \\ M \\ F \\ F \\ V \end{bmatrix}$ $K = \begin{bmatrix} A \\ Support is capable of su$				
8. Gravitational attraction	W = mg $W = mg$ W				
9. Spring action Neutral F F position $F = kx$ Hardening F = kx Softening F = -x $-x$	<i>F</i> <i>F</i> <i>F</i> <i>F</i> <i>F</i> <i>F</i> <i>F</i> <i>F</i> <i>F</i> <i>F</i>				

Figure 5–3: Beam Reaction Types (Continued)

ETSA

Department of Civil Engineering Technology

CE 161 / B 111 Engineering Statics

5.4 Beam Types:

Beams can be divided into (Figure 5–4):

- Statically determinate beams:
 - Simply supported beams
 - One-sided over-hanging beam
 - Two-sided over-hanging beam
 - Cantilever beam
- Statically indeterminate beams:
 - Continuous beam
 - End–supported cantilever
 - Fixed at both ends

Statically determinate beams

Statically indeterminate beams

ETSA

5.5 Beam Reactions:

- Reactions on beams are developed due to the applications of the various loads on the beam.
- The reactions can be calculated (determinate beams only) by applying the three equations of equilibrium after drawing the free body diagram of the beam.
- The three equations of equilibrium are:

5.6 Sign Convention:

The positive sign convention used throughout the course is summarized in Figure 5–6. The positive x-direction is taken to the right, the positive y-direction is taken upward, and the positive moment is taken in the counter-clockwise direction.

Figure 5–6:The positive sign convention for forces and moment

CIVIL

Department of Civil Engineering Technology CE 161 / B 111 Engineering Statics

Example (5):

5/94 Determine the reactions at the supports A and B for the beam loaded as shown.

Solution:

College of Technological Studies		Depart Engineer	ment of Civil ing Technolog	у	CE 161 / B 111 Engineering Statics			
For the following	examples, ca	lculate the re	eactions at the	frame su	ipports.			
Example (6):								
	<u>21</u>		35 kN/m	-200 kN				
		5 m						
	-							
		4	-10 m					
Solution:								
	3 1				ΥE		Ð	
	<u>R</u> 1		\square	Δ			B	
	5 4						Ð	
					ΥE		Ð	
-	8 1						B	
	\mathbf{D}						Ð	
					-\E		Ð	
_	R 1		\mathbf{P}		AF	-	R	

CTS A

CTSA

CE 161 / B 111 Engineering Statics

5.8 Internal Forces in Structural Members:

Internal forces were defined as the forces and couples exerted on a portion of the structure by the rest of the structure.

Figure 5–7: Sign convention for axial force, shear force, and bending moment

5.8.1 Procedure for Analysis

The procedure for determining internal forces at a specified location on a beam can be summarized as follows:

- 1- Compute the support reactions by applying the equations of equilibrium and condition (if any) to the free body of the entire beam. In cantilever beams, this step can be avoided by selecting the free, or externally unsupported, portion of the beam for analysis.
- 2- Pass a section perpendicular to the centroidal axis of the beam at the point where the internal forces are desired, thereby cutting the beam into two portions.
- 3- Although either of the two portions of the beam can be used for computing internal forces, we should select the portion that will require the least amount of computational effort, such as the portion that does not have any reactions acting on it or that has the least number of external loads and reactions applied to it.
- 4- Determine the axial force at the section by algebraically summing the components in the direction parallel to the axis of the beam of all the external loads and support reactions acting on the selected portion.

ETSA VII

- 5- Determine the shear at the section by algebraically summing the components in the direction perpendicular to the axis of the beam of all the external loads and reactions acting on the selected portion.
- 6- Determine the bending moment at the section by algebraically summing the moments about the section of all the external forces plus the moments of any external couples acting on the selected portion.
- 7- To check the calculations, values of some or all of the internal forces may be computed by using the portion of the beam not utilized in steps 4 through 6. If the analysis has been performed correctly, then the results based on both left and right portions must be identical.

54

For the following examples, determine the axial forces, shears, and bending moments at points A and B of the structure shown.

5.9 Examples:

Example (1):

ETSA

Dr. Alshaiji $\mathbb C$

Department of Civil Engineering Technology

CE 161 / B 111 Engineering Statics

5.10 Problems:

The magnitude of the triangular distributed load is $w_0 = 2 \text{ kN/m}$. Determine the internal forces and moment at A.

Question (5.2)

Determine the internal forces and moment at A.

Question (5.3)

The pipe has a fixed support at the left end. Determine the internal forces and moment at A.

Question (5.4)

Model the ladder rung as a simply supported (pin supported) beam and assume that the 750-N load exerted by the person's shoe is uniformly distributed. Determine the internal forces and moment at A.

Question (5.5)

Determine the internal forces and moment at A and B.

Question (5.6)

Determine the internal forces and moment at A and B.

Question (5.7)

Determine the internal forces and moment at A.

Question (5.8)

For the beam shown, What is the shear force and bending moment at mid-span? Assume support A is a hinge and B is a roller.

Department of Civil Engineering Technology

CE 161 / B 111 Engineering Statics

Chapter (6): Truss Analysis

6.1 Introduction:

Truss is an assemblage of straight members connected at their ends by flexible connections to form a rigid configuration. Because of their light weight and high strength, trusses are widely used, and their applications range from supporting bridges and roofs of buildings to being support structures in space stations. Modern trusses are constructed by connecting members, which usually consist of structural steel or aluminum shapes or wood struts, to gusset plates by bolted or welded connections.

If all the members of a truss and the applied loads lie in a single plane, the truss is called a plane truss. Plane trusses are commonly used for supporting decks of bridges and roofs of buildings.

Figure 6–1: Common roof trusses

Dr. Alshaiji ©

6.2 Assumptions for Analysis of Trusses:

The analysis of trusses is usually based on the following simplifying assumptions:

- 1- All members are connected only at their ends by frictionless hinges in plane trusses and by frictionless ball-and-socket joints in space trusses.
- 2- All loads and support reactions are applied only at the joints.
- 3- The centroidal axis of each member coincides with the line connecting the centers of the adjacent joints.

6.3 Method of Joints:

6.3.1 Procedure for Analysis

The following step-by-step procedure can be used for the analysis of statically determinate simple plane trusses by the method of joints.

- 1- Check the truss for static determinacy. If the truss is found to be statically determinate and stable, proceed to step 2. Otherwise, end the analysis at this stage.
- 2- Determine the slopes of the inclined members (except the zero–force members) of the truss.
- 3- Draw a free–body diagram of the whole truss, showing all external loads and reactions.
- 4- Examine the free-body diagram of the truss to select a joint that has no more than **two unknown** forces (which must not be collinear) acting on it. If such a joint is found, then go directly to the next step. Otherwise, determine reactions by applying the three equations of equilibrium and the equations of condition (if any) to the free body of the whole truss; then select a joint with two or fewer unknowns, and go to the next step.
- 5- a. Draw a free-body diagram of the selected joint, showing tensile forces by arrows pulling away from the joint and compressive forces by arrows pushing into the joint. It is usually convenient to assume the unknown member forces to be tensile.
 - b. Determine the unknown forces by applying the two equilibrium equations (x and y direction). A positive answer for a member force means that the member is in tension, as initially assumed, whereas a negative answer indicates that the member is in compression.

If at least one of the unknown forces acting at the selected joint is in the horizontal or vertical direction, the unknowns can be conveniently determined by satisfying the two equilibrium equations by inspection of the joint on the free–body diagram of the truss.

- 6- If all the desired member forces and reactions have been determined, then go to the next step. Otherwise, select another joint with no more than two unknowns, and return to step 5.
- 7- If the reactions were determined in step 4 by using the equations of equilibrium and condition of the whole truss, then apply the remaining joint equilibrium equations that have not been utilized so far to check the calculations. If the reactions were computed by applying the joint equilibrium equations, then use the equilibrium equations of the entire truss to check the calculations. If the analysis has been performed correctly, then these extra equilibrium equations must be satisfied.

For the following examples, find the forces in the members of the truss and indicate if the member is in tension or compression.

CTSA

ETSA

CE 161 / B 111 Engineering Statics

6.4 Method of Sections:

6.4.1 Procedure for Analysis:

The following step-by-step procedure can be used for determining the member forces of statically determinate plane trusses by the method of sections.

- 1. Select a section that passes through as many members as possible whose forces are desired, but not more than three members with unknown forces. The section should cut the truss into two parts.
- 2. Although either of the two portions of the truss can be used for computing the member forces, we should select the portion that will require the least amount of computational effort in determining the unknown forces. To avoid the necessity for the calculation of reactions, if one of the two portions of the truss does not have any reactions acting on it, then select this portion for the analysis of member forces and go to the next step. If both portions of the truss are attached to external supports, then calculate reactions by applying the equations of equilibrium and condition (if any) to the free body of the entire truss. Next, select the portion of the truss for analysis of member forces that has the least number of external loads and reactions applied to it.
- 3. Draw the free–body diagram of the portion of the truss selected, showing all external loads and reactions applied to it and the forces in the members that have been cut by the section. The unknown member forces are usually assumed to be tensile and are, therefore, shown on the free–body diagram by arrows pulling away from the joints.
- 4. Determine the unknown forces by applying the three equations of equilibrium. To avoid solving simultaneous equations, try to apply the equilibrium equations in such a manner that each equation involves only one unknown. This can sometimes be achieved by using the alternative systems of equilibrium equations (Sum of moment equations) instead of the usual two-force summations and a moment summation system of equations.
- 5. Apply an alternative equilibrium equation, which was not used to compute member forces, to check the calculations. This alternative equation should preferably involve all three member forces determined by the analysis. If the analysis has been performed correctly, then this alternative equilibrium equation must be satisfied.

CTSA

For the following examples, use the method of sections to solve for the required members (indicated by x) and state whether the members are in tension or compression.

Example (1):

Solution:

ETSA

ETSA IVIL

Department of Civil Engineering Technology CE 161 / B 111 Engineering Statics

Example (3):

Members: EI, JI

ETSA

CE 161 / B 111 Engineering Statics

12 kN

6.5 Problems:

Question (6.1)

Using the method of joints, determine the force in each member of the truss shown. State whether each member is in tension or compression.

Question (6.2)

Using the method of joints, determine the force in each member of the truss shown. State whether each member is in tension or compression.

Question (6.3)

Using the method of joints, determine the force in each member of the truss shown. State whether each member is in tension or compression. Assume the loads $F_1 = F_2 = 8$ kN.

Using the method of sections, determine the force in members CD and DF. State whether each member is in tension or compression.

Using the method of sections, determine the force in members *CE*, *DE* and *DF*. State whether each member is in tension or compression.

Question (6.6)

Using the method of sections, determine the force in members CD and DF. State whether each member is in tension or compression.

ETSA IVII

Department of Civil Engineering Technology CE 161 / B 111 Engineering Statics

Chapter (7): Geometric Centroids

7.1 Introduction:

- The centroid represents the geometric center of a body.
- This point coincides with the center of mass or the center of gravity only if the material composing the body is uniform or homogeneous.
- Finding the centroid of an area has many usages in engineering.
- The locations of centroids are usually tabulated in engineering references. (Figure 7–1)
- In the following section, we look at "Composite Shapes" and try to find their centroids.

Figure 7–1: Centroidal Locations For Common Geometric Shapes

7.2 Composite Shapes:

A composite shape consists of a series of connected "simpler" shapes, which may be rectangular, triangular, semicircular, etc.

Such a shape can often be sectioned or divided into its composite parts and, provided the area and location of the center of gravity of each of these parts are known, the centroid for the entire composite shape can be found.

We apply the following

$$\overline{x} = \frac{\sum Ax}{\sum A}, \quad \overline{y} = \frac{\sum Ay}{\sum A}$$
(7-1)

Where:

x: the distance from the local centroid of the "simple" shape to the *y*-axis (x moment arm)

y: the distance from the local centroid of the "simple" shape to the x-axis (y moment arm)

 \overline{x} : is the x-coordinate of the centroid location

 \overline{y} : is the *y*-coordinate of the centroid location

A: is the area of the "simple" shape

7.3 Procedure of Calculating Centroid Location:

The location of the center of the centroid of a composite geometrical object represented by an area can be determined using the following procedure.

- Composite Parts.
 - Using a sketch, divide the area into a finite number of composite parts that have simpler shapes.
 - If a composite shape has a hole, then consider the composite shape without the hole and consider the hole as an additional composite part having negative area.
- Moment Arms
 - Establish the coordinate axes on the sketch and determine the coordinates x, y of the center centroid of each part.

• Summations

- Determine \overline{x} , \overline{y} by applying the centroid equations (7–1).
- $\circ~$ If an area is symmetrical about an axis, the centroid of the area lies on this axis.
- $\circ~$ If desired, the calculations can be arranged in tabular form.

College of Technological Studies			Department of Civil Engineering Technology			l ogy	CE 161 / B 111 Engineering Statics			_	
7.4 Exai	nples:										
Exampl	le (1):										
Loca	ate the c	entroid of t	he plate	area sho	wn in Fig.	. 9–17a.			y		
Solutio	on:	P					A				
							- $2 ft$				
		R				D		$ \cdot - 2 \text{ ft} - 2 \text{ ft} - 1 \text{ ft} \cdot - 2 \text{ ft} - 1 \text{ ft} \cdot - 2 \text{ ft} - 1 \text{ ft} \cdot - 2 \text{ ft} - 1 \text{ ft} \cdot - 2 \text{ ft} -$		- x	
								(Fig	(a) 5. 9–17		
		Б					A	Ali			-)
											_
								AE			
		P									-)
											_
		B				P					2
											_
		Б						ΛΓ			5
		Þ					A				
		R									2
		Б									5
											_
											5

CTS A

CE 161 / B 111 Engineering Statics Department of Civil Engineering Technology College of Technological Studies Example (2): Locate the centroid $(\overline{x}, \overline{y})$ of the cross-sectional area of the channel. Solution: 1 in. 22 in. -<mark>9</mark> in. 1 in. 1 in. –

12 in

2 in.

2 in.] 4 in 12 in.

Example (3):

*9–52. Locate the centroid \overline{y} of the cross-sectional area of the concrete beam.

Solution:

3 in. 27 in. 6 in. 3 in. 3 in.

Example (4):

9-54. Locate the centroid \overline{y} of the channel's crosssectional area.

Solution:

2 in.

12 in.

С

Department of Civil Engineering Technology CE 161 / B 111 Engineering Statics

Example (5):

Loca the built-up b Solution:	te the centro peam.	id \overline{y} of the cros	s-sectional a	rea of	
				$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	Б			HAALI	Б
	R			ΦΛΛΕΤΙ	R
Example (6):	В			PAAET	
Locate the	e centroid	$(\overline{x}, \overline{y})$ of the	composite	y	
Solution:	B			$\leftarrow 3 \text{ in.} \rightarrow \leftarrow 4 \text{ in.} \rightarrow \rightarrow$	
	Б				
	Ð				x

Department of Civil Engineering Technology

CE 161 / B 111 **Engineering Statics**

7.5 Problems:

Let the dimensions R = 6 in, c = 14 in, and b = 18 in. Determine the x coordinate of the centroid.

Bonus: Do problem (7.1) symbolically.

Question (7.2)

Determine the x coordinate of the centroid.

Question (7.3)

Determine the x and y coordinate of the centroid.

Question (7.4)

Determine the x and y coordinate of the centroid.

If the cross-sectional area of the beam is 8400 mm^2 and the *y* coordinate of the centroid of the area is $(\overline{y} = 90 \text{ mm})$ what are the dimensions b and h?

Question (7.6)

+3 in+ -5 in--5 in-+3 in + Determine the x and y coordinate of the centroid of the beam's cross-section.

Question (7.7)

Determine the x and y coordinate of the airplane's vertical stabilizer.

Department of Civil Engineering Technology CE 161 / B 111 Engineering Statics

Chapter (8): Useful Formulas

8.1 Geometric Properties of Line and Area Elements:

Centroid Location	Centroid Location Area Moment of Inertia
$\begin{array}{c} y \\ \hline r \\ \theta \\ \hline C \\ \hline r \\ sin \\ \theta \\ \hline C \\ \hline r \\ sin \\ \theta \\ \hline C \\ \hline c \\ c \\$	$I_{x} = \frac{1}{4}r^{4}(\theta - \frac{1}{2}\sin 2)\theta$ $I_{y} = \frac{1}{4}r^{4}(\theta + \frac{1}{2}\sin 2)\theta$ Circular sector area
$r = \frac{\frac{\pi}{2}r}{C} + \frac{2r}{\pi} + \frac{L}{C} + \frac{\pi}{2}r$	$J_{x} = \frac{1}{16}\pi r^{4}$ $I_{x} = \frac{1}{16}\pi r^{4}$ $I_{y} = \frac{1}{16}\pi r^{4}$ $I_{y} = \frac{1}{16}\pi r^{4}$
Quarter and semicircle arcs	Quarter circle area
$A = \frac{1}{2}h(a + b)$	$J_{x} = \frac{\pi r^{2}}{\frac{4r}{3\pi}}$ $I_{x} = \frac{1}{8}\pi r^{4}$ $I_{y} = \frac{1}{8}\pi r^{4}$ Semicircular area
$ \begin{array}{c} \hline b \\ \hline a \\ \hline c \\ \hline c \\ \hline \frac{3}{5}a \\ \hline \frac{3}{5}b \\ \end{array} $ Semiparabolic area	$J_{x} = \frac{1}{4}\pi r^{4}$ $I_{y} = \frac{1}{4}\pi r^{4}$ Circular area
$A = \frac{1}{3}ab$ $A = \frac{1}{3}a$	$\begin{array}{c} y \\ h \\ \hline \\ h \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$
$\begin{array}{c} \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$A = \frac{1}{2}bh$ $A = \frac{1}{2}bh$ $I_x = \frac{1}{36}bh^3$ Triangular area

ETSA

Dr. Alshaiji ©

79

CE 161 / B 111 Engineering Statics Department of Civil Engineering Technology College of Technological Studies 8.2 Center of Gravity and Mass Moment of Inertia of Homogenous Solids: $V = \frac{4}{3}\pi r^3$ $V = \pi r^2 h$ G $\frac{h}{2}$ Sphere $I_{xx} = I_{yy} = I_{zz} = \frac{2}{5} mr^2$ Cylinder $I_{xx} = I_{yy} = \frac{1}{12}m(3r^2 + h^2)$ $I_{zz} = \frac{1}{2}mr^2$ $V = \frac{1}{3}\pi r^2 h V = \frac{2}{3}\pi r^{3}$ G. $\frac{3}{8}r$ Cone Hemisphere $I_{xx} = I_{yy} = \frac{3}{80}m(4r^2 + h^2)$ $I_{zz} = \frac{3}{10}mr^2$ $I_{xx} = I_{yy} = 0.259 mr^2$ $I_{zz} = \frac{2}{5} mr^2$ GThin plate Thin Circular disk $I_{xx} = \frac{1}{12} mb^2$ $I_{yy} = \frac{1}{12} ma^2$ $I_{zz} = \frac{1}{12} m(a^2 + b^2)$ $I_{xx} = I_{yy} = \frac{1}{4}mr^2$ $I_{zz} = \frac{1}{2}mr^2$ $I_{z'z'} = \frac{3}{2}mr^2$ G

 $x' \qquad \text{Slender Rod} \qquad y' \\ I_{xx} = I_{yy} = \frac{1}{12} m\ell^2 \quad I_{x'x'} = I_{y'y'} = \frac{1}{3} m\ell^2 \quad I_{z'z'} = 0$

Dr. Alshaiji ©

81

Thin ring

 $I_{xx} = I_{yy} = \frac{1}{2}mr^2 \qquad I_{zz} = mr^2$

CE 161 / B 111 Engineering Statics

8.3 Fundamental Equations of Statics:

Cartesian Vector

$$\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}$$

Magnitude

$$A = \sqrt{A_x^2 + A_y^2 + A_z^2}$$

Directions

$$\mathbf{u}_{A} = \frac{\mathbf{A}}{A} = \frac{A_{x}}{A}\mathbf{i} + \frac{A_{y}}{A}\mathbf{j} + \frac{A_{z}}{A}\mathbf{k}$$
$$= \cos\alpha\mathbf{i} + \cos\beta\mathbf{j} + \cos\gamma\mathbf{k}$$
$$\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma = 1$$

Dot Product

$$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta$$
$$= A_x B_x + A_y B_y + A_z B_z$$

Cross Product

$$\mathbf{C} = \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

Cartesian Position Vector

$$\mathbf{r} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}$$

Cartesian Force Vector

$$\mathbf{F} = F\mathbf{u} = F\left(\frac{\mathbf{r}}{r}\right)$$

Moment of a Force

$$M_o = Fd \qquad | \mathbf{i} \quad \mathbf{j} \quad \mathbf{k} | \\ \mathbf{M}_o = \mathbf{r} \quad \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}$$

Moment of a Force About a Specified Axis

$$M_a = \mathbf{u} \cdot \mathbf{r} \times \mathbf{F} = \begin{vmatrix} u_x & u_y & u_z \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}$$

Simplification of a Force and Couple System

$$\mathbf{F}_R = \Sigma \mathbf{F}$$
$$(\mathbf{M}_R)_O = \Sigma \mathbf{M} + \Sigma \mathbf{M}_O$$

Equilibrium

$$\Sigma F_x = 0, \ \Sigma F_y = 0, \ \Sigma F_z = 0$$

Rigid Body-Two Dimensions
$$\Sigma F_x = 0, \ \Sigma F_y = 0, \ \Sigma M_O = 0$$

Rigid Body-Three Dimensions
$$\Sigma F_x = 0, \ \Sigma F_y = 0, \ \Sigma F_z = 0$$

$$\Sigma M_{x'} = 0, \ \Sigma M_{y'} = 0, \ \Sigma M_{x'} = 0$$

Friction

Static (maximum) $F_s = \mu_s N$ Kinetic $F_k = \mu_k N$

Center of Gravity

Particles or Discrete Parts

$$\overline{r} = \frac{\Sigma \widetilde{r} W}{\Sigma W}$$

Body

$$\overline{r} = \frac{\int \widetilde{r} \, dW}{\int dW}$$

Area and Mass Moments of Inertia

 $k = \sqrt{\frac{I}{A}}$

$$I = \int r^2 dA \qquad I = \int r^2 dm$$

 $\delta U = 0$

Parallel-Axis Theorem

 $I = \overline{I} + Ad^2 \qquad I = \overline{I} + md^2$

Radius of Gyration

$$k = \sqrt{\frac{I}{m}}$$

Virtual Work

CE 161 / B 111 Engineering Statics

8.4 SI Prefixes:

Multiple	Exponential Form	Prefix	SI Symbol
1 000 000 000 1 000 000 1 000	10^9 10^6 10^3	giga mega kilo	G M k
Submultiple			
0.001 0.000 001 0.000 000 001	$ 10^{-3} \\ 10^{-6} \\ 10^{-9} $	milli micro nano	$\begin{array}{c} m \\ \mu \\ n \end{array}$

8.5 Conversion Factors (FPS) to (SI)

	Unit of		Unit of
Quantity	Measurement (FPS)	Equals	Measurement (SI)
Force	lb		4.448 N
Mass	slug		14.59 kg
Length	ft		0.3048 m

8.6 Conversion Factors (FPS):

	1 ft = 12 in. (inches)
	1 mi. (mile) = 5280 ft
1 kip	(kilopound) = 1000 lb
	1 ton = 2000 lb

ETSA

CE 161 / B 111 Engineering Statics

8.7 Conversion Factors Table:

3.6.1.1.1	D	T O I i :		D	TE OL .:
Multiply	By	To Obtain	Multiply	Ву	To Obtain
acre	43560	square feet (ft^2)	joule (J)	9.478×10^{-4}	Btu
ampere-hr (A-hr)	3600	coulomb (C)	J	0.7376	ft-lbf
ångström (Å)	1×10^{-10}	meter (m)	J	1	newton \cdot m (N \cdot m)
atmosphere (atm)	76	cm, mercury (Hg)	J/s	1	watt (W)
ıtm, std	29.92 in	mercury (Hg)			
atm, std	14.7	lbf/in^2 abs (psia)	kilogram (kg)	2.205	pound (lbm)
ıtm, std	33.9	ft, water	kgf	9.8066	newton (N)
itm, std	1.013×10^{5}	pascal (Pa)	kilometer (km)	3281	feet (ft)
			km/hr	0.621	mph
bar	1×10^{5}	Pa	kilopascal (kPa)	0.145	lbf/in^3 (psi)
oarrels-oil	42	gallons-oil	kilowatt (kW)	1.341	horsepower (hp)
Btu	1055	joule(J)	kW	3413	Btu/hr
Btu	2.928×10^{-4}	kilowatt-hr (kWh)	kW	737.6	(ft-lbf)/sec
Btu	778	ft-lbf	kW-hour (kWh)	3413	Btu
Stu/hr	3.930×10^{-4}	horsepower (hp)	kWh	1 341	hp-hr
Rtu/hr	0.293	watt (W)	kWh	3.6×10^{6}	ioule (I)
Stu/hr	0.216	ft-lbf/sec	$kin(\mathbf{K})$	1000	lbf
Julym	0.210	10-101/300	\mathbf{K}	1000	nonton (N)
alania (n. m.l)	2 069 10-3	Dites	K	4440	newton (1)
alorie (g-cal)	3.908 X 10	Diu he he	1:t = (T)	61.09	:3
a. 	1 1 9 P	ioulo (T)	T T	01.02	mal (TIS T:->
.a.	4.180	Joule (J)		0.204	$\operatorname{gal}_{3}(\mathrm{US}\operatorname{Liq})$
al/sec	4.186	watt (W)		10×10 ⁻⁵	m^{3}
centimeter (cm)	3.281×10 ⁻²	toot (ft)	L/second (L/s)	2.119	ft ^o /min (cfm)
m	0.394	inch (in)	L/s	15.85	gal (US)/min (gpm
centipoise (cP)	0.001	$pascal \cdot sec (Pa \cdot s)$			and the second sec
centistokes (cSt)	1×10^{-6}	$m^2/sec (m^2/s)$	meter (m)	3.281	feet (ft)
cubic feet/second (cfs)	0.646317	million gallons/day (mgd)	m	1.094	yard
ubic foot (ft ³)	7.481	gallon	metric ton	1000	kilogram (kg)
cubic meters (m ³)	1000	Liters	m/second (m/s)	196.8	feet/min (ft/min)
electronvolt (eV)	1.602×10^{-19}	joule (J)	mile (statute)	5280	feet (ft)
e			mile (statute)	1.609	kilometer (km)
foot (ft)	30.48	cm	mile/hour (mph)	88	ft/min (fpm)
ì Ì	0.3048	meter (m)	mph	1.609	km/h
t-pound (ft-lbf)	1.285×10^{-3}	Btu	mm of Hg	1.316×10^{-3}	atm
t-lbf	3.766×10^{-7}	kilowatt-hr (kWh)	mm of H ₂ O	9.678×10^{-5}	atm
t-lbf	0.324	calorie (g-cal)	min of H ₂ O	DIGICATO	Concernent
1-151 4-15f	1 356	ioule (I)	newton (N)	0.995	lbf
t lbf/coa	1.000	horeenower (hp)	N m	0.220	ft lbf
-101/360	1.010×10	norsepower (np)	N m	1	ioula (I)
rollon (TIC Tic)	9 70E	litan (T)	11.111		Jome (1)
	0.100	nter (L)	1/D	0.000.10-6	1 1 1 1 N
gallon (US Liq)	0.134	II	pascal (Pa)	9.869×10	atmosphere (atm)
gallons of water	8.3453	pounds of water	Pa		newton/m ² $(N/m2)$
(γ, Γ)	1×10^{-9}	tesla (T)	$Pa \cdot sec (Pa \cdot s)$	10	poise (P)
auss	1×10^{-4}	1	pound (lbm,avdp)	0.454	kilogram (kg)
$\operatorname{gram}(\mathbf{g})$	2.205×10^{-3}	pound (lbm)	lbf	4.448	Ν
			lbf-ft	1.356	$N \cdot m$
lectare	1×10^{4}	square meters (m^2)	lbf/in^2 (psi)	0.068	atm
nectare	2.47104	acres	psi	2.307	ft of H_2O
orsepower (hp)	42.4	Btu/min	psi	2.036	in of Hg
ip	745.7	watt(W)	psi	6895	Pa
	33000	(ft-lbf)/min			
r.		(n. 1) n) /	1.	180	14. cz
ıp	550	(ft-lbf)/sec	radian	π	degree
ıp-hr	2544	Btu		19 49 A	
ip-hr	1.98×10^{6}	ft-lbf	stokes	1×10^{-4}	m^2/s
ip-hr	2.68×10^{6}	joule (J)			
ip-hr	0.746	kWh	therm	1×10^{5}	Btu
nch (in)	2 54	centimeter (cm)	watt (W)	3 413	Btu/br
n of Hg	0.0334	etm	W	1.341×10^{-3}	horsepower (hp)
n or fig	19.6	in of H O	XX XX7	1.041 X 10 ~	ioula (neg (T/r))
n or ng	19.0	H_{2}	W	10000	Jome/sec (J/s)
H_2O	0.0301	ibi/in- (psi)	weber/m ² (Wb/m ²)	10000	gauss
m of Hall	-0.002458	atm			

ETSA

CE 161 / B 111 **Engineering Statics**

8.8 Cheat Sheet:

Right Triangle

For this definition we assume that $0 < \theta < \frac{\pi}{2}$ or $0^\circ < \theta < 90^\circ$

ETSA

Department of Civil Engineering Technology

CE 161 / B 111 Engineering Statics

Reciprocal Identities $\sin(\theta) = \frac{1}{\csc(\theta)}$ $\cos(\theta) = \frac{1}{\sec(\theta)}$ $\tan(\theta) = \frac{1}{\cot(\theta)}$ $\csc(\theta) = \frac{1}{\sin(\theta)}$ $\sec(\theta) = \frac{1}{\cos(\theta)}$ $\cot(\theta) =$ $\tan(\theta)$ Pythagorean Identities $\tan^2(\theta) + 1 = \sec^2(\theta)$ $\cot^2(\theta) + 1 = \csc^2(\theta)$ $\sin^2(\theta) + \cos^2(\theta) = 1$ Even/Odd Formulas $\sin(-\theta) = -\sin(\theta)$ $\csc(-\theta) = -\csc(\theta)$ $\sec(-\theta) = \sec(\theta)$ $\cos(-\theta) = \cos(\theta)$ $\tan(-\theta) = -\tan(\theta)$ $\cot(-\theta) = -\cot(\theta)$ **Inverse Trig Functions** $y = \sin^{-1}(x)$ is equivalent to $x = \sin(y)$ $y = \cos^{-1}(x)$ is equivalent to $x = \cos(y)$ $y = \tan^{-1}(x)$ is equivalent to $x = \tan(y)$ Law of Sines, Cosines and Tangents

Law of Cosines $a^{2} = b^{2} + c^{2} - 2ac\cos(\alpha)$ $b^{2} = a^{2} + c^{2} - 2bc\cos(\beta)$ $c^{2} = a^{2} + b^{2} - 2ab\cos(\gamma)$

Law of Tangents

$$\frac{a-b}{a+b} = \frac{\tan\frac{1}{2}(\alpha-\beta)}{\tan\frac{1}{2}(\alpha+\beta)} \qquad \frac{b-c}{b+c} = \frac{\tan\frac{1}{2}(\beta-\gamma)}{\tan\frac{1}{2}(\beta+\gamma)} \qquad \frac{a-c}{a+c} = \frac{\tan\frac{1}{2}(\alpha-\gamma)}{\tan\frac{1}{2}(\alpha+\gamma)}$$

	College Technological	of Studies	Departme Engineering	ent of Civil g Technology	CE 161 / B 111 Engineering Statics	
			Mollweide	's Formula		
			$\frac{a+b}{a} = \frac{\cos \theta}{2}$	$\frac{1}{2} \frac{1}{\alpha - \beta}$		
				$\sin \frac{1}{2} \gamma$		
				Triangles		
			$ \begin{array}{c} \uparrow \\ B \\ \downarrow \\ b \\ \downarrow \\ \downarrow$	$\begin{array}{c} A \\ a \\ \hline c \\ \hline \end{array}$		
AE	Algebra:		$\frac{A}{a} = \frac{h}{b}$	$\frac{C}{b} = \frac{C}{c}$		
			Arithmetic	Operations (h) ah		
			ab + ac = a (b + c) $\frac{\left(\frac{a}{b}\right)}{c} = \frac{a}{bc}$	$a\left(\frac{b}{c}\right) = \frac{ab}{c}$ $\frac{a}{\left(\frac{b}{c}\right)} = \frac{ac}{b}$		
			$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$ $\frac{a - b}{c - d} = \frac{b - a}{d - c}$	$\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$ $\frac{a + b}{c} = \frac{a}{c} + \frac{b}{c}$		
			$\frac{ab+ac}{a} = b+c, \ a$ Exponent	$\neq 0 \qquad \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \frac{ad}{bc}$ Properties		
			$a^n a^m - a^{n+m}$	$a^n - a^{n-m} - 1$		
			$(a^{n})^{m} = a^{nm}$ $(ab)^{n} = a^{n}b^{n}$	$a^{0} = 1, \ a \neq 0$ $\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$		
		$\left(\frac{a}{b}\right)$	$a^{-n} = rac{1}{a^n}$ $^{-n} = \left(rac{b}{a} ight)^n = rac{a^n}{b^n}$ Properties	$\frac{1}{a^{-n}} = a^{n}$ $a^{\frac{n}{m}} = \left(a^{\frac{1}{m}}\right)^{n} = (a$ of Radicals	$n)\frac{1}{m}$	
			$\sqrt[n]{a} = a^{\frac{1}{n}}$	$\sqrt[n]{ab} = \sqrt[n]{a}\sqrt[n]{b}$		
		3	$\sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a}$	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$		
		$\sqrt[n]{\sqrt[n]{a}}$	a = a, if n is odd	$\sqrt[n]{\sqrt[n]{a}} = a $, if <i>n</i> is	even	
	ETSA	3		87	Dr. Alshai	ji ©

Department of Civil Engineering Technology

CE 161 / B 111 Engineering Statics

B 111 Statics

Distance Formula

If $P_1 = (x_1, y_1)$ and $P_1 = (x_1, y_1)$ are two points the distance between them is

$$d(P_1, P_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Logarithms and Log Properties

Definition

 $y = \log_b x$ is equivalent to $x = b^y$

Special Logarithms

 $\ln x = \log_e x$ natural log

 $\log x = \log_{10} x$ common log where $e = 2.718281828 \cdots$

Logarithm Properties

 $\log_b b = 1 \qquad \log_b 1 = b \qquad \log_b b^x = x \qquad b^{\log_b x} = x$ $\log_b (x^r) = r \log_b x \qquad \log_b (xy) = \log_b x + \log_b y \qquad \log_b \left(\frac{x}{y}\right) = \log_b x - \log_b y$ The domain of $\log_b x$ is x > 0

Dr. Alshaiji $\mathbb C$

CE 161 / B 111 Engineering Statics

Answers to Problems:

Chapter (2)

2.1	$R = 3.30 \mathrm{kN},$	$\alpha = 66.6^{\circ}$
2.2	$P = 101.4 \mathrm{N},$	$R = 196.6 \mathrm{N}$
2.3	$F_x = 61.3 \mathrm{N},$	$F_{y} = 51.4 \mathrm{N}$
	$F_x = 41.0 \mathrm{N},$	$F_{y} = 112.8$ N
	$F_x = -122.9 \mathrm{N}$	$F_{y} = 86.0 \mathrm{N}$
2.4	$F_x = 640$ N,	$F_{y} = 480 \text{N}$
	$F_x = -224$ N,	$F_{y} = -360 \mathrm{N}$
	$F_x = 192 \mathrm{N},$	$F_{y} = -360$ N
2.5	R = 54.9 lb,	$\alpha = 48.9^{\circ}$
2.6	R = 202 lb,	$\alpha = 33.2^{\circ}$

Chapter (3)

3.1	$T_{AC} = 6.37 \mathrm{kN}, \ T_{BC} = 12.47 \mathrm{kN}$
3.2	$T_{AC} = 1244 \text{lb}, \ T_{BC} = 115.4 \text{lb}$
3.3	(a) $x_{AC} = 0.739 \mathrm{m}, \qquad x_{AB} = 0.467 \mathrm{m}$
	(b)m = 8.56 kg
3.4	$F_1 = 1.83 \mathrm{kN}, F_2 = 9.60 \mathrm{kN}$
3.5	$T_{AC} = 312 \mathrm{N}, T_{BC} = 144 \mathrm{N}$
3.6	$P = 1249 \mathrm{N}$ $\alpha = 62.5^{\circ}$

Chapter (4)

4.1	$(a) M_{B} = -115.7 \text{lb-in}$
	(b) $\alpha = 23.2^{\circ}$
4.2	$M_{B} = -361.77 \text{lb-in}$
4.3	$M_{s} = -6111$ b-in
4.4	$(a) M_1 = 336 lb-in$
	$(b)d_1 = 28 in$
	$(c)\alpha = 54.05^{\circ}$
4.5	$M_{O} = -5600 \text{lb-ft}$
4.6	F = 1671b

Chapter (5)

5.1 $N_A = 0$ N, $V_A = 100$ N, $M_A = 40$ N-m
5.2 $N_A = 0$ N, $V_A = 400$ lb, $M_A = -1900$ lb-ft
5.3 $N_A = 1.88 \text{ kN}, V_A = -2.68 \text{ kN}, M_A = 0.56 \text{ kN-m}$
5.4 $N_A = 0 \text{ N}, V_A = -125 \text{ N}, M_A = 53.1 \text{ N-m}$
5.5 $N_A = 0$ N, $V_A = 84$ lb, $M_A = 522$ lb-ft
5.6 $N_A = 0$ N, $V_A = 24$ lb, $M_A = 522$ lb-ft
5.7 $N_A = 0$ N, $V_A = -592$ lb, $M_A = 950$ lb-ft
5.8 $W = 0 M = Wl^2$
$V = 0, M = \frac{1}{8}$
Chapter (6)

Chapter (6)

- 6.1 $F_{AB} = 720 \operatorname{lb}(T), F_{BC} = -780 \operatorname{lb}(C),$ $F_{AC} = -1200 \operatorname{lb}(C)$ 6.2 $F_{AB} = F_{AE} = 671 \operatorname{lb}(T), F_{BC} = F_{DE} = -600 \operatorname{lb}(C),$
- $F_{AB} = F_{AE} = -0.0110(T), \ F_{BC} = T_{DE} = -0.0010(C), \ F_{AC} = F_{AD} = -10001b(C), \ F_{CD} = 2001b(T)$
- 6.3 $F_{BD} = 10 \,\mathrm{kN}(T), F_{BE} = 8 \,\mathrm{kN}(T), F_{BG} = -5 \,\mathrm{kN}(C)$
- 6.4 $F_{CD} = -9 \,\mathrm{kN}(C), F_{DF} = 12 \,\mathrm{kN}(T)$
- $\begin{array}{l} 6.5 \quad F_{CE} = 8000 \, \mathrm{lb}(T), \ F_{DE} = 2600 \, \mathrm{lb}(T), \\ F_{DF} = -9000 \, \mathrm{lb}(C) \end{array}$

6.6
$$F_{CD} = -20 \,\mathrm{kN}(C), F_{DF} = -52 \,\mathrm{kN}(C)$$

Chapter (7)

- 7.1 $\bar{X} = 9.60$ in
- 7.2 $\bar{X} = 116 \,\mathrm{mm}$
- 7.3 $\bar{X} = 6.97 \text{ in}, \bar{Y} = 3.79 \text{ in}$
- 7.4 $\overline{X} = 9.9$ in, $\overline{Y} = 0$ in
- 7.5 h = 18.2 mm, b = 39.7 mm
- 7.6 $\overline{X} = 0$ in, $\overline{Y} = 7.48$ in
- 7.7 $\overline{X} = 9.64$ in, $\overline{Y} = 4.60$ in

Glossary

Here is a simple glossary of some of the most used terminology in statics and structural analysis courses.

			Α	AAEIE
Abrupt				مفاجئ
Absolute				مطلق
Absolute Value				القيمة المطلقة
Absolute system of	units			نظام الوحدات المطلقة
Acceleration				تسارع
Accuracy				دقّة
Accurate				دقيق
Action				عمل / فعل
Active force				القوة الفعالة / القوة النشطة
Actual				فعلي
Addition				إضافة / جمع
Addition of forces				جمع القوى
Addition of vectors				جمع المتجهات
Adjacent vectors				المتجهات المجاورة
Advantage				أفضلية
Aerostatics				الإيروستاتيكس / علم توازن الهواء و الغازات
Algebra				علم الجبر
Algebraic				جبري
Algebraic expression	1			تعبير جبري
Algebraic sum				جمع جبري
Allow				يسمح
Analysis				تحليل
Analytical				تحليلية
Analyze				تحليل
Anchor bolts				مرساة البراغي
Anemometers				أنيموميتر / جهاز قياس شدة الريح
GTSA			90	Dr. Alshaiji ©
				AAEIT

College of Technological Studies	Departi Engineeri	nent of Civil ng Technology	CE 161 / B 111 Engineering Statics
<u>et R 1</u>		DA	
Angle			زاوية
Angular			زاوي / ذو علاقة بالزاوية
Answer			إجابة
Apex			ذروة
Application			تطبيق
Applied force			القوة المطبقة
Approximate			تقريي
Arbitrary shapes			الأشكال العشوائية
Arches			أقواس
Area			مساحة
Area moments of inertia			عزم المساحة (عزم القصور الذاتي)
Area of cross-section			مساحة المقطع العرضي
Arm			ذراع
Arrow			سهم
Associative			ترابطي
Associative addition			الجمع الترابطي
Associative property			الخاصية الترابطية
Assume			افترض
Assumption			افتراض
Atmospheric pressure			الضغط الجوي
Available			متاح
Average			معدل
Axes			محاور
Axial			محوري
		вРА	AFT F
Balanced			متوازن
Bar			قضيب (معدني)
Barrel arches			أقواس ذات مقطع علوي شبه اسطواني
Base			قاعدة

Beam cross section Beam cross section Cantilever beam Deep beam Overhanging beam Simply supported beam Bearing friction	11 PA 11 PA	ة المقطع العرضي للكمرة كمرة معلقة (كابولي) كمرة عميقة كمرة المتدلية
Beam cross section Cantilever beam Deep beam Overhanging beam Simply supported beam Bearing friction		المقطع العرضي للكمرة كمرة معلقة (كابولي) كمرة عميقة كمرة المتدلية
Cantilever beam Cancel Constraints of Cantilever beam Cancel Constraints of Cancel Const		كمرة معلقة (كابولي) كمرة عميقة كمرة المتدلية
Deep beam of the second		كمرة المتدلية
Overhanging beam Simply supported beam Bearing Bearing friction		كمرة المتدلية
Simply supported beam Bearing Bearing friction		
Bearing Bearing friction		كمرة بسيطة
Bearing friction		ىل / ضغط
		تحمل / ضغط الاحتكاك
Bearing stress		 إجهاد التحمل / الضغط
Behavior		
Belt		م
Belt friction		حزام الاحتكاك
Belts and pulleys		أحزمة وبكرات
Bending		س السلم الم
Bending moment		عزم الانحناء
Bending moment diagram		الرسم البياني لعزم الانحناء
Bending rigidity		صلابة الانحناء
Bending stress		إجهاد الانحناء
Bernoulli's principle of virtual d	lisplacements	أبرنولى للإزاحة الإفتراضية
Body		سم المل
Body force		قوة الجسم
Body rotation		دوران الجسم
Bond		
Boundary		ود
Boundary conditions		شروط / حالات الحدود
Braced frame		ر غير قابل للتمايل (مثبت)
Bracing		ېت
Bridge		بر الم
British system of units		لمام البريطاني للوحدات
Brittle		

College of Technological Studies	Departmen Engineering '	t of Civil Technology	CE 161 / B 111 Engineering Statics
Buckling		PA	تواء
Buckling load			حمل الالتواء
Buckling moment			عذم الالتواء
Building			اء ا
Building code			قانون البناء
Building materials			مواد بناء
Buoyancy			طفو
Cabler	C		
Careful have			ساب التفاضل والتكامل
Cambered beam			هرة المقوسة تصميميا
Cantilever			تئ / بارز / (کابولي) -
Capstan			حويه
Cartesian			يکارتي در مرب در مرب و
Cartesian components			المكونات الديكارتية
Cartesian coordinates			الإحداثيات الديكارتية
Catenary			لمسال
Center			ردز
Center line			خط الوسط
Center of mass			مركز الكتلة
Center of pressure			مركز الضغط
Center of gravity			مركز الجادبية
Centroid			ردز المساحة / الجسم
Chand			حور مردز المساحة / الجسم
Circle of friction			
Circular			ئرة الاحتكاك
Circular			ئري
Circular area			مساحة دائرية

CTS A

College of Technological Studies		Engi	neerin	g Technology	Engineering Statics	
-TR				DA		
Circumference					لحيط	
Civil engineers					لهندس مدني	
Clamps					ىشابك	
Classification					صنيف	
Clockwise					مقارب الساعة	
Coefficient					نعامل	
Coefficient of friction	ı				معامل الاحتكاك	
Coincide					تزامن	
Collapse					نهدام	
Collinear					على خط واحد	
Column					عامود	
Common					ىشترك	
Commutative property					فاصية التبديل	
Compatible					ىتوافق	
Complementary					ىكمل	
Component					ىكون	
Composite					ىركّب	
Compound					ىركّب	
Compound beam					كمرة مركبة	
Compound truss					جمالون مركّب	
Compression					ښغط	
Computation					حساب	
Computer analysis					حليل باستخدام الحاسوب	
Concave					لقعر	
Concentrated					ىركز	
Concentrated force					قوة مركزة	
Concentrated load					حمل مرکز	
Conceptual design					لتصميم النظري	
Concrete					لخرسانة	
Concrete bridges					جسور خرسانية	
CTSA					Dr. Alchaiii @	

College of Technological Studies	De Eng	epartn ineerii	nent of Civil ng Technolog	CE 161 / B 111 Engineering Statics
				ΛΛΕΤΙ
Reinforced concrete				خرسانة مسلحة
Concurrent				نفس الوقت
Concurrent force system				نظام القوة المتزامنة
Condition				برط / حالة
Cone of friction				خروط الاحتكاك
Conservative				تحفّظ
Conservation of energy sta	tes			حفظ حالات الطاقة
Conservative system				أنظمة متحفّظة
Constant				
Constant of gravitation				بت الجاذبية
Constrained				قيدة
Constraint				يود
Construction				عمال بناء
Contact				نصل / اتصال
Continuity				ستمرارية
Continuous				ستمر
Convention				رف
Conversion				حويلات
Convex				حدب 🚽 🛆
Coordinates				حداثيات
Coordinate systems				نظم الإحداثيات
Coordinate transformation				تحول الإحداثيات
Coplanar				ي نفس المسطح
Copper				حاس
Corner				کن
Corresponding				مقابِلة
Corrosion				کل
Cosines				عيب التمام (cos)
Coulomb theory of friction				ظرية كولومب للاحتكاك
Counterclockwise				كس عقارب الساعة

College of Technological Studies	Departme Engineering	ent of Civil g Technology	CE 161 / B 111 Engineering Statics
		DA	
Couple			زوجان / مزدوج
Cover			غطاء
Crack			شرخ
Create			يُحدِث
Creep			زحف
Critical			حرج
Cross			عکس / ضرب
Cross bracing			تثبيت متعاكس
Cross or vector product			حاصل الضرب المتجهي
Crush			سحق
Curvature			انحناء
Curve			منحنى
Customary units (U.S.)			الوحدات الأمريكية المتعارف عليها
Cutout			تم استقطاعه / جزء مقطوع من كل
Cylinder			اسطوانة
		PA	
Dam	·	D	
Dampers			مخدرات / لادته ام الطلقة
Dead load			العبار الديت
Debris impact load			العمل الميك
Deck truss			حملون فانير العظام
Deen			جمانون تحمل الاسطاع
Definition			تعدف
Deflection			لغريف
Deform			تشيده / تنب بالشكا
Deformable body			
Deformation			جسم مسور
Degree			
Degree of freedom (DOF)			درب
Degree of freedom (DOF)			درجه العرية

CTS A

College of Technological Studies	Departmer Engineering	nt of Civil Technology	CE 161 / B 111 Engineering Statics
Degree of redundancy			درجة التكرار
Degree of Statical indeter	minacy		درجة عدم الثبات الاستاتيكي
Density			كثافة
Dependent			يعتمد على
Depth			عمق
Derivative			المشتقة
Derived units			الوحدات المشتقة
Design			تصميم
Determinacy			الحتمية
Determinate			مُحدد / (استاتيكياً)
Deviation			الانحراف
Diagonal			قطري
Diagram			رسم بياني / رسم
Diameter			قطر الدائرة
Deferential			تفاضلي
Differential element			عنصر التفاضلية
Differential equation			المعادلة التفاضلية
Dimension			بُعد
Dimensionless			عديم أبعاد
Direct			مباشرة
Direction			اتجاه
Disk friction			احتكاك القرص
Displacement			الإزاح
Distorted sketch			رسم مشوهة
Distribute			يوزع
Distributed loads			الأحمال الموزعة
Distribution			توزيع
Distribution factor (DF)			عامل التوزيع
Distributive laws			قوانين التوزيع
Distributive property			خاصية التوزيع

CTS A CONTRACT

College of Technological Studies	Department of Civil Engineering Technology	CE 161 / B 111 Engineering Statics
ETR1	$11 D\Lambda$	ALTE
Divide		يقسم
Dot products		ضرب المتجهات عددياً
Double		مزدوج
Double integration		التكامل المزدوج
Draw		رسم
Dry friction		الاحتكاك الجاف
Ductile		قابل للسحب
Dummy load		حمل وهمي
Durable		متين
Dynamic		ديناميکي
	${f E}$	
Earthquake	11 D A	زلزال
Eccentric		غير محوري

	5	
Λ	Earthquake	
	Eccentric	
	Edge	
	Effect	
	Effective	
	Efficiency	
	Elastic	
	Electromagnetic forces	
	Element	
	Elevations	
	Elongation	
	Empirical formula	
	Energy	
	Engineering	
	Engineering mechanics	
	Equation	
	Equilibrium	
	Equilibrium equations	
	<u>ETSA</u>	

Dr. Alshaiji ©

حافة

تأثير

فعال

كفاءة

مرن

جزء

الارتفاعات

الصيغة التجريبية

الميكانيكا الهندسية

معادلات الاتزان

استطالة

طاقة

هندسة

معادلة

اتزان

القوى الكهرومغناطيسية

College of Technological Studies	Depart Engineer	ment of Civil	CE 161 / B 111 Engineering Statics
		$D\Lambda$	
Equilibrium position			موضع الاتزان
Equivalent			مكافئ
Equivalent systems of fore	ces		أنظمة مكافئة للقوى
Errors in computation			أخطاء في الحساب
Evaluation of design			تقييم التصميم
Exceed			يتجاوز
Expansion			توسيع
External			خارجي
		FDЛ	
Fabrication errors			أخطاء التصنيع
Factor			عامل
Factor of safety			عامل السلامة
Gust factor			عامل العاصفة
Impact factor			عامل التأثير
Reduction factor			عامل التخفيض
Failure			فشل
Feet (ft)			قدم (وحدة قياس)
Fibers			ألياف
Finite			محدود
Fink trusses			جمالون (نوع Fink)
First moment of area			العزم الأول للمساحة
First–order analysis			تحليل من الدرجة الأولى
Fixed			ثابت
Flat roofs			أسطح مستوية
Flexibility			المرونة
Flexible cables			الكابلات المرنة
Flexural stiffness			صلابة الانحناء
Flood loads			أحمال الفيضانات
Floor systems			أنظمة الأرضييات

CTSA

College of Technological Studies	Department Engineering 7	t of Civil Fechnology	CE 161 / B 111 Engineering Statics
		DA	
Fluids			الموائع
Footing			قاعدة / أساس
Force			قوة القصور الذاتي
Formula			معادلة
Formulation of problems			صياغة المشاكل
Foundation			ساس
Frame			لإطار
Free			حر
Free-body diagrams (FBD)			مخططات الجسم الحر
Friction			حتكاك
Frictionless			مديم الاحتكاك
Function			الة / تطبيق رياضي
	a		
	G		1 11 5
Cape			سعه الصعط
Cas			
Conoral			یار
General loading			کام ((عدس حاص)
Geometrically unstable structure			
Cirdor			فيكل غير مستقر هندسيا
Clobal goordinate system			فارضه / تمره رئيسية عرضية
Craphical			طام الإحداثيات العالمية
Craphical representation			ياتي / رسومي
Graphical solutions			تمتيل رسو <i>م</i> ي
Gravitation			حلول رسوميه
Crewitational notantial area	CIL		لجادبيه الارضيه
Gravitational potential ener	gy		طافة الجاذبية الكامنة
Gravity			الجادبيه
Gyration			وران / التفاف

Η

100

CTSA

College of Technological Studies	Departmen Engineering	nt of Civil Technology	CE 161 / B 111 Engineering Statics
		DA	
Hard			صعب / صلب
Height			ارتفاع
High			مرتفع
High–strength steel wires			أسلاك الفولاذ عالية القوة
Highway bridges			جسور الطريق السريع
Hinge			مفصل
Hollow			أجوف
Homogenous			متجانس
Hooke's law			قانون هوك
Horizontal			أفقي
Horsepower (hp)			حصان (وحدة قياس)
Hour (h)			ساعة (وحدة قياس)
Howe truss			جمالون (نوع Howe)
Hydraulics			علم السوائل المتحركة / هيدروليكس
Hydrostatics			علم الهيدروستاتيكا
Hydrostatic loads			الأحمال الهيدروستاتيكية
Hydrostatic pressure			الضغط الهيدروليكي
	Т		

I-beams	كمرة بمقطع حرف ال I
Idealizing structures	هياكل مثالية
Identical	مطابق
Imaginary	خيالي
Impact factor	عامل التأثير
Impeding	وشيك
Impending motion	حركة وشيكة
Impending slip	انزلاق وشيك
Improper	غير سليم / غير لائق
Improper constraints	القيود غير السليمة
Improper supports	الدعامات غير السليمة

CTS A

College of Technological Studies		Depart: Ingineeri	ment of Civil ng Technology	CE 161 / B 111 Engineering Statics		
			DA			
Inclined				ىائل		
Indeterminate				غير محدد		
Inelastic behavior				ىلوك غير مرن		
Inertia force				وة القصور الذاتي		
Infinity				الا نهاية		
Inflection				تواء / انثناء / تغییر مسار		
Influence area				نطقة التأثير		
In-plane				ي نفس المسطح الهندسي		
Integration				كامل رقمي		
Intermediate				توسط		
Internal				اخلي		
International				ولي		
International Code C	ouncil			مجلس القانون الدولي		
International System	of units	(SI unit	5)	النظام الدولي للوحدات		
Isolate			JPA			
Joint			-	صّالة / مفصل		
Joule				مول (وحدة طاقة)		
			к			
K truss		_		ممالون (نوع K)		
Kilo–				ليلو (1000 وحدة)		
Kilogram (kg)				كيلوغرام (وحدة قياس)		
Kilometer (km)				الكيلومتر (وحدة قياس)		
Kilonewtons (kN)				كيلونيوتونات (وحدة قياس)		
Kilopound (kip)				كيلوباوند (وحدة قياس)		
Kinetic energy				طاقة الحركية		
TR			гDV	AFTI		
Lateral bracing				aila arcui / bu		

CTSA

College of Technological Studies	5	Department of Civil Engineering Technology					CE 161 / B 111 Engineering Statics		
$ \mathbf{R}$						Λ /			
Law								قانون	
Law of cosines							(co	قانون(sines	
Law of sines							(:	قانون (sines	
Laws of motion								قوانين الحركة	
Length								لطول	
Level								مستوى	
Limit								حد	
Line								خط	
Line of action						ى	خط تأثير القوة	خط العمل /	
Linear								خطي	
Link								حلقة وصل	
Liquids								لسوائل	
Loads								حمال	
Dead loads							ż	الأحمال الميتا	
Earthquake loads								أحمال الزلازل	
Flood loads							نات	أحمال الفيضا	
Live loads								الأحمال الحية	
Rain loads								أحمال الأمطا	
Roof loads							2	أحمال الأسط	
Snow loads								أحمال الثلوج	
Wind loads								أحمال الرياح	
Load intensity							الحمل	کثافة / شدّة	
Loading conditions							يل	حالات التحم	
Loading curve							ل	منحنى التحمب	
Local coordinate system							حلية	نظام الإحداثيات الم	
Longitudinal fibers								لألياف الطولية	
Low–rise buildings							فاع	مبانى منخفضة الارت	
				Μ					
Machines								آلات	

CTSA
College of Technological Studies	Depa Engine	artment of Civil eering Technology	CE 161 / B 111 Engineering Statics
<u> </u>		$1 D \Lambda /$	
Magnitude			قيمة
Mass			كتلة
Material			مادة
Mathematics			الرياضيات
Mathematical model			نموذج رياضي
Matrix			مصفوفة
Maximum			أقصى
Mechanical efficiency			الكفاءة الميكانيكية
Mechanics			علم الميكانيكا
Mechanism			آلية
Mega gram (Mg)			ميغاغرام (وحدة قياس)
Member			عضو / عنصر
Member coordinate system		للأعضاء	نظام الإحداثيات للعناصر /
Member stiffness			صلابة الأعضاء
Meter (m)			متر (وحدة قياس)
Method			طريقة
Metric			متري
Middle			وسط
Mild steel			الفولاذ الطري
Mile (mi)			ميل (وحدة قياس)
Minimum			الحد الأدنى
Minute (min)			دقيقة (وحدة قياس)
Modulus			معامل
Modulus of elasticity			معامل المرونة
Young's modulus			معامل يونج
Mohr s circle			دائرة (Mohr)
Moment			عزم
Motion			حركة وشيكة
Multi–force members			عناصر متعددة القوى

CTS A

College of Technological Studies

Department of Civil Engineering Technology

CE 161 / B 111 Engineering Statics

	N
Negative	سلبي
Neutral	محايد
Neutral axis	المحور المحايد
Neutral plane	المسطح المحايد
Newton (N)	نيوتن (وحدة قياس)
Newton's law of gravitation	قانون نيوتن للجاذبية
Newton's three fundamental laws	قوانين نيوتن الثلاثة الأساسية
Nonlinear	غير الخطية
Normal force	قوى طبيعية
Notations	الترميزات / الرموز
Numerical	عددي / رقمي
Numerical Analysis	تحليل رقمي
Numerical integration	تكامل رقمي
Object	0
One-story building	ميفيهن طارق واحد
Opposite	مقارا / عكيد
Ordinate	الأحداث الصادي (ص) انقطة
Origin	الأميا
Original	أصل
	ا عربي
	P
Parallel	موازى
Parallelogram	متوازي الاضلاع
Partial constraints	قيود جزئية
Particle	جسيم
Pascals (Pa)	باسكالز (وحدة قياس)
Passing a section	يمر خلال مقطع

Passing a section

Perimeter

Dr. Alshaiji ©

محيط

Permanent Perpendicular Pin support (Pi Annadian (Pi Plane (Pi Planar (Pi Point of application (Pi Point of inflection (Pi Point of inflection (Pi Point of inflection (Pi Point of inflection (Pi Possible (Pi Potential energy (Pi Practical (Pratt) Prefixes (Pratt) Prefixes (Pratt) Pressure distribution (Pi Primary moment (Qi Qi (Pinicipal axes) Projection (Pi Proportional limit (Pi Proportional limit (Pi Puer bending (Pi Puer bending (Pi	atics
Perpendicular Pin-support (Pi Pin-support (Pi Pin-support (Pi Panar Eduar Planar Eduar Point of application Eduar Point of inflection Eduar Point of inflection Eduar Point of inflection Eduar Possible Eduar Potential energy Eduar Pound (lb) (Crath) Pressure (Pratt) Prefixes (Pratt) Prefixes (Pratt) Pressure distribution Eduar It based Eduar Principal axes Eduar Equar Eduar Projection Eduar Proportional limit Eduar Proportional limit Eduar Pulleys Pure bending	<u>جا</u> .
Pin-support (Pi Pin-support (Pi non-state non-state Planar Education Point of application Point of application Point of inflection Point of inflection Practical Practical Pressure Pressure Pressure distribution Pressure intensity Principal axes Paue Proportion Proportion Proportion Proportion Proportion Pressure Pressure Proportion Puer bending <td>دانم</td>	دانم
Pin support (Pi Plane حسطح Planar حفرالعسار / تغير التقوس Point of application التواء / تغير العسار / تغير التقوس Point of inflection Point of inflection Practical Practical Practical Pressure Pressure distribution Pressure intensity Primary moment Que principal axes vijicipal axes Pressure Proportion Proportion Proportion Proportion Proportion Proportion Pulleys Puer bending	عمودي
Plane حسطح Plane Point of application Point of application Point of inflection Prefixes (Pratt) Pressure distribution Initiary moment Queue Principle Proportion Proportion Initiary Proportional limit Pue bending	دعامة (Pin
Planar ر فو مسطح Point of application ل ل التطبيق Point of application ل التطبيق Point of inflection س التطبيق Pressure (Pratt) Pressure distribution س التطبيق Primary moment س التطبيق س التطبيق س التطبيق Principle س التطبيق Proportion ساحات الساحات ساحات Proportional limit س التس التس التس التس التس التس التس الت	مستوى / مى
Point Point of application لة التواد / تغير المسار / تغير التقوس Point of inflection لة التواد / تغير المسار / تغير التقوس Polygon Point of inflection Position Possible Possible Potential energy Pound (lb) (Pratt) Pratt truss (Pratt) Prefixes Pressure Pressure distribution ين الضغط Primary moment ين الضغط Projection ين المنحا Proportional limit ين إلى المساحات Proportional limit ين إلى المساحات Proportional limit ين إلى المساحات Pune bending إلى المساحات	ذو مستوى /
لله التطبيق Point of application لله التطبيق Point of inflection من اله التواه / تغير المسار / تغير التقوس Point of inflection من اله التواه / تغير المسار / تغير التقوس Position Possible Potential energy من المساح Potential energy من المساح Potential energy وع المساح Potential energy (Pratt truss (Pratt) و Pratt truss (Pratt) و Prefixes Pressure Pressure distribution وي الضغط Pressure intensity وي الضغط في الضغط Principle Product وي المساح و Projection Properties of areas وي المساح و Proportional limit Proportional limit وي العو الحي المساح و Pue bending وي المساح و Pressure وي المساح و Properties of areas وي المساح و Pue bending وي المساح و Pue Pue bending وي المساح و Puerce Pue	لقطة
Point of inflection لله التواء / تغير المسار / تغير التقوس Polygon Polygon Position Position Possible Potential energy Potential energy att Pound (lb) (pratt) Practical Practical Pratt truss (Pratt) Prefixes Pressure Pressure distribution	نقطة ا
Polygon Position Position Position Possible Position Potential energy Fait Pound (lb) (() Practical (Pratt) Pratt truss (Pratt) Prefixes (Pratt) Pressure (Pressure distribution Pressure intensity Last Primary moment () vtjunge () Projection () Proportional limit () Proportional limit () Pulleys Puleyee Pure bending ()	نقطة ا
Position Position Possible المال Possible المال Potential energy المال Pound (lb) (() Pound (lb) (() Practical () Practical () Pratt truss () Prefixes () Pressure () Pressure distribution ليع الضغط Pressure intensity ليع الضغط Principal axes المالحاحال Principal axes الرئيسية Projection () Properties of areas () Proportional limit المالحاحال Proportional limit () Pulleys () Pue bending ()	لمضلع
Possible Potential energy Potential energy Las Pound (lb) Practical Practical Pratt truss Prefixes Prefixes Pressure distribution pressure intensity Principal axes principal axes trup Projection Properties of areas Proportional limit Proportional limit Pulleys Pure bending	موضع
Potential energy المنة Pound (lb) ((رابع الله الله الله الله الله الله الله الل	ىمكن
Pound (lb) دة قياس) Practical Practical Pratt truss (Pratt) Prefixes Pressure Pressure distribution pressure intensity Primary moment vtj.mus Product Properties of areas Proportional limit Pulleys Pure bending	لطاقة الكامنا
Practical Pratt truss (Pratt) يع (Pratt) يع Prefixes Pressure Pressure distribution لعنا المناط Pressure intensity (Primary moment (Primary moment (Principal axes ين المناط Principle (Projection (Properties of areas (Proportional limit (Proportional limit (Pulleys (Pure bending () (Pratt) (Pratt) (Pratt) (Protect (Proportion (Proportional limit (Pulleys (Pure bending () (Pratt) (Pratt) (Pratt) (Pratt) (Pratt) (Proportion (Pr	جنيه (وحدة
Pratt truss(Pratt)PrefixesPressurePressure distributionPressure distributionPressure intensityPrimary momentccPrincipal axesPrincipleProductProperties of areasProportionProportional limitPulleysPure bending	عملي
PrefixesPressurePressure distributionيع الضغطPressure intensityPrimary momentيPrincipal axesPrincipleProductProjectionProperties of areasProportional limitProportional limitPulleysPure bending	جمالون نوع (
PressurePressure distributionPressure distributionPressure intensityPrimary momentcvcPrincipal axesPrincipleProductProjectionProperties of areasProportional limitProportional limitPulleysPure bending	لبادئات
Pressure distributionالفغطPressure intensityالفغطPrimary momentإي إي إ	لضغط
ة المنعط Pressure intensity و المنعط Principal axes رئيسية Principle و المعاد و ال	توزيع
ي Principal axes مرئيسية Principle Product مربر Projection Properties of areas مال مال حات Proportion المساحات Pupleys	شدة ال
برئيسية Principle Product Projection Properties of areas Proportion Proportional limit Pulleys Pure bending	عزم أساسى
Principle Product Projection Properties of areas Proportion Proportional limit Pulleys Pure bending	لمحاور الرئيد
يرب Projection Properties of areas Proportion Proportional limit Pulleys Pure bending	مبدأ
Projection Properties of areas Proportion Proportional limit Pulleys Pure bending	حاصل الضرد
Properties of areas المساحات Proportion Proportional limit بد النسبي Pulleys Pure bending	سقاط
Proportion Proportional limit Pulleys Pure bending Pulleys	خصائص الم
د النسبي Proportional limit و النسبي Pulleys	سىة
Pulleys Pure bending	الحد ال
Pure bending	ا،کات
	مبتر <u>-</u> ام:ماانق
Pythagorean theorem	ظرب سي
	لطرية فيناعر

	Q	
Quality		دة
Quantity		
	R	
Radian	11	بان (وحدة قياس)
Radius		ف القطر
Range		ق
Ratio		بة
Reaction		فعل
Real work		مل الحقيقي / الفعلي
Rectangular components		كونات المستطيلة للمتجه
Reduction factor		لى التخفيض
Redundant		، عن الحاجة / متوفر
Redundancy		وفرة
Redundant supports		دعم زائدة عن الحاجة
Reinforced concrete		سانة مسلحة
Relationship		ä
Relative		یا
Resistance		ومة
Resolution		ىيل
Result		جة
Resultant		صلة
Revolution		ٳڹ
Right		ودي / قائم
Right triangle		مثلث قائم
Right-hand rule		قاعدة اليد اليمنى
Right-handed coordinate	e system	نظام إحداثيات اليد اليمنى
Rigid		بد ا
Rivet		ام

College of Technological Studies	I Enj	Departmer gineering	nt of Civil Technology	CE 161 / B 111 Engineering Statics
			DΛ	
Roof				سقف
Rotate				یدور
Rotated axes				محاور تم استدارتها
Rotation				دوران
Rough surfaces				الأسطح الخشنة
Rounding off				التقريب
Rule				قاعدة / قانون
		S		
Safe		~	DA	آمن
Scalar				عددي / رقمي
Scale				مقياس
Screw				برغي
Second (s)				الثانية (وحدة قياس)
Section				جزء
Semicircular area				منطقة نصف دائرية
Sense				إحساس
Series				سلسلة / متتالية
Service loads				أحمال خدماتية
Shear				قص
Shear force				قوة القص
Shear force diagram				مخطط قوة القص
Shear stress				إجهاد القص
Sidesway				التمايل الجانبي
Sign conventions				توقيع الاتفاقيات
Similar				مماثل
Simple support				دعامة بسيطة
Slender				نحيل
Slip				انزلاق
Slope				ميل

CTS A CONTRACTOR

College of Technological Studies	Engineering 2	Technology	Engineering Statics
-TR1	11	$D\Lambda$	
Smooth surfaces			الأسطح الملساء
Solution			حل
Space			الفراغ / فضاء
Span			امتداد
Specific weight			الوزن المحدد
Spherical domes			قبب كروية
Spring			زنبرك
Spring constant			ثابت الزنبرك
Stable			مستقر
Static			ئابت / ساكن
Static equilibrium equation	S		معادلات التوازن الساكنة
Static friction			الاحتكاك الساكن
Statically determinate			محدد استاتيكياً
Statically equivalent set			مجموعة مكافئة الستاتيكياً
Statically indeterminate			غير محدد استاتيكياً
Static–friction force			قوة الاحتكاك الثابت
Statics		كنة	علم الثوابت / السكون / الأجسام السا
Stationary			ئابت
Stiffness			صلادة
Strategies			ستراتيجيات
Strength			قوة
Stress			جهاد
Bearing stress			إجهاد التحمل / الضغط
Normal stress			الإجهاد العامودي
Shear stress			إجهاد القص
Stretch			نمتد
Structural analysis			حليل إنشائي
Structure			<i>ه</i> یکل / منشأ
Subtraction			طرح
Sufficient conditions			- ظروف كافية
CTS A	10		Dr. Alabaiii @

College of Technological Studies	D Eng	epartmen gineering	nt of Civil Technology	CE 161 / B 111 Engineering Statics
Summary			PA	ملخص
Superposition				تراكب
Super–positioned force	es			قوى متراكبة
Super–positioned loads	8			أحمال متراكبة
Superimposing displacement	nts			إزاحات متراكبة
Support				الدعم/ دعامة
Fixed				ثابت / مرتكز
Hinged				فصالة
Roller				منزلق / قابل للانزلاق أفقياً
Surface force				قوة السطح
Suspended cables				الكابلات المعلقة
Symbol				رمز
Symmetry				تناظر
System				النظام
		-		
Table			PA	alolh / loux
Tangential				تماسی
Taylor series				متتالية تايلور
Temperature variation				تبابن درجة الحبارة
Tension				شد
Test				اختيار
Theory				نظرية
Thickness				سماکة
Thin plates				لوحات رقيقة
Time				زمن / وقت
Ton (t)				طن (وحدة قياس)
Torque				عزم الدوران
Torsion				التواء
T				مكة / التقال

CTS A

Dr. Alshaiji ©

College of Technological Studies	De Engi	part neer	ment ing Te	of Civil echnology	CE 161 / B Engineering St	atic
				$D\Lambda$		
Trapezoid						حرف
Triangle						
Triangle law						مثلث
Tributary areas					دة	الراف
Trigonometry						للثات
Truss						
Deck truss					، لحمل الأسطح	مالون
Fink truss					ر (نوع Fink)	مالون
Howe truss					، (نوع Howe)	مالوز
K truss) (نوع K)	مالون
Pratt truss					ر (نوع Pratt)	مالوز
Vierendeel truss) (نوع Vierendeel)	مالوز
Warren truss) (نوع Warren)	مالوز
Tsunami						
Tube						
			T T			
	_	4	U			
Ultimate						. 1
Unbalanced moment (UM)					ڹ	متواز
Underestimate						، شان
Uniformly distributed load					: بشکل مو <i>حد</i>	لموزع
Unit						
Universal gravitational constant	t				، العالمي	جاذبية
Unknowns						ل
Unstable						نقر
			V			
Value						
Variable						
Vector						
Velocity						

College of Technological Studies		I En	Departmen gineering [t of Civil Fechnology	CE 161 / B 111 Engineering Statics	
				DA	ALTI	
Vertical					مودي	
Vierendeel truss					مالون (نوع Vierendeel)	
Virtual					نراضي / غير واقعي	
Volume					جم	
			W	r		
Warren truss				$D\Lambda$	مالون (نوع Warren)	
Watt (W)					ط (وحدة قياس)	
Wave					جة	
Wedge					L L	
Weight					ن L	
Welding					بام	
Wheel friction					يتكاك العجلة	
Width					يض	
Winches					وافع	
Wind					5	
Wires					سلاك	
Work					ىل	
Wrench					لتاح الربط	
Yield			1		ضوع	
Yield strain					انفعال الخضوع	
Yield stress					إجهاد الخضوع	
Young's modulus					امل يونج	
			Z			
Zero–force members					بناصر ذات القوى الصفرية	