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Chapter (1): Units and Units System

1.1 Units of Measurements:

Name Length Time Mass Force
International meter second kilogram
System of Units N
SI m 5 kg kg-m
(")

U.S. Customary foot second pound

FPS
Ib-s?
ft s b
ft

Table 1-1: Systems of Units

*Derived unit.

e The four basic quantities length, time, mass, and force are not all independent from

one another.
e They are related by Newton’s second law of motion, F = ma.
e The equality F = ma is maintained only if three of the four units, called base units,

are defined and the fourth unit is then derived from the equation.

1.1.1 SI System of Units:

e Asshown in Table 1-1, the SI system defines length in meters (m), time in seconds
(s), and mass in kilograms (kg). The unit of force, called a newton (N), and it is

derived from F = ma.
e If we define the weight as the “Force” of gravity, then the weight will have units of
(N).
o If the mass of the object (m) is given along with the acceleration due to gravity (g),
the weight of an object can be calculated by equation (1-1) as:
W =mg (1-1)
Where, g = 9.80665 m/s?. From now on, we will set g = 9.81 m/s?

1.1.2 US Customary Units:

e In the U.S. Customary system of units (FPS) length is measured in feet (ft), time in

seconds (s), and force in pounds (lb) as in Table 1-1.

e The unit of mass, called a slug, is derived from F = ma.

e Hence, 1 slug is equal to the amount of matter accelerated at 1 ft/s?> when acted
upon by a force of 1 Ib (slug = lb—s?/ft).

o g=2322ft/s
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1.1.3 SI Units Prefixes:

e When a numerical quantity is either very large or very small, the units used to define

its size may be modified by using a prefix.
e Some of the prefixes used in the SI system are shown in Table 1-2.

e FEach represents a multiple or submultiple of a unit which, if applied successively,

moves the decimal point of a numerical quantity to every third place.

e For example, 4000000 N = 4000 kN (kilo-newton) = 4 MN (mega—newton), or 0.005

m = 5 mm (milli-meter).

The Prefixes Used with SI Units

Prefix Symbol Value Scientific Notation
exa— B 1,000,000,000,000,000,000 1018
peta— P 1,000,000,000,000,000 101°
tera— T 1,000,000,000,000 1012
glga— G 1,000,000,000 10°
mega— M 1,000,000 108
kilo— k 1,000 10°
hecto - h 100 10?
deka— da 10 101
— = 1
deci— d 0.1 101
centi— c 0.01 102
milli— m 0.001 103
micro— I 0.000 001 106
nano— n (0.000 000 001 109
pico— p 0.000 000 000 001 1012
femto— f 0.000 000 000 000 001 10715
atto— a 0.000 000 000 000 000 001 1018

Table 1-2: SI Units Prefixes

1.2 Unit Conversion:

Units of Units of
Quantity Measurements (FPS) Equals Measurements (FPS)
Force Ib 4.448 N
Mass slug 14.59 kg
Length ft 0.3048 m

Table 1-3: Conversion Factors

Table 1-3 provides a set of direct conversion factors between FPS and SI units for the basic
quantities. Also, in the FPS system, recall that 1 ft = 12 in. (inches), 5280 ft = 1 mi (mile),
1000 1b = 1 kip (kilo—pound), and 2000 1b = 1 ton.
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1.2.1 Examples:

Example (1):
Represent each of the following combinations of units in
the correct SI form using an appropriate prefix: (a) kN/us,
(b) Mg/mN, and (c) MN/(kg - ms).
Solution:
Example (2):
Represent each of the following quantities in the correct
SI form using an appropriate prefix: (a) 0.000 431 kg,
(b) 35.3(10°) N, and (c) 0.005 32 km.
Solution:
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Example (3):

Convert 2 km/h to m/s How many ft/s is this?

Solution:
Example (4):
If a car is traveling at 55 mi/h, determine its speed in
kilometers per hour and meters per second.
Solution:
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Example (5):

The specific weight (wt./vol.) of brass is 520 Ib/ft3.
Determine its density (mass/vol.) in SI units. Use an

appropriate prefix.
Solution:
Example (6):
Convert each of the following and express the answer using
an appropriate prefix: (a) 175 Ib/ft® to kN/m?, (b) 6 ft/h to
mm/s, and (c) 835 Ib - ft to kN - m.
Solution:
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Chapter (2): Force Vectors

2.1 Scalars and Vectors:
Scalar:
e A scalar is any positive or negative physical quantity that can be completely
specified by its magnitude.
e Examples of scalar quantities include length, mass, and time.
Vector:
e A vector is any physical quantity that requires both a magnitude and a direction for
its complete description.
e Examples of vectors encountered in statics are force, position, and moment.
e A vector is shown graphically by an arrow.
o The length of the arrow represents the magnitude of the vector
o The angle @ between the vector and a fixed axis defines the direction of its
line of action.

o The head or tip of the arrow indicates the sense of direction of the vector.

Line of action—_

Head- . /

Figure 2-1: Elements of a vector

2.2 Vector Operations:
2.2.1 Multiplication and Division of a Vector by a Scalar:
e If a vector is multiplied by a positive scalar, its magnitude is increased by that
amount.

e Multiplying by a negative scalar will also change the directional sense of the vector.

Graphic examples of these operations are shown in Figure 2-2.

Figure 2—2: Multiplication and Division of a Vector by a Scalar

6 Dr. Alshaiji ©




College of Department of Civil CE 161 / B 111

Technological Studies Engineering Technology Engineering Statics

2.2.2 Vector Addition:

Parallelogram Method: (Tail-to—Tail)

All vector quantities obey the parallelogram law of addition. To illustrate, the two

“component” vectors A and B in (Figure 2-3a) are added to form a “resultant” vector R.

Where R can be expressed as:

R=A4A+B (2-1)

Using the following procedure:

First join the tails of the components at a point to make them concurrent, Figure
2—3b.

From the head of B, draw a line parallel to A. Draw another line from the head of A
that is parallel to B. These two lines intersect at point P to form the adjacent sides

of a parallelogram.

The diagonal of this parallelogram that extends to P forms R, which then represents
the resultant vector R = A + B, Figure 2-3c.

e

(a) (b) ()

Figure 2-3: Vector Addition

Triangular Method: (Head —to —Tail)

We can also add B to A, Figure 2—4a, using the triangle rule, which is a special case

of the parallelogram law, whereby vector B is added to vector A in a “head—to—tail”
fashion Figure 2—4b.

The resultant R extends from the tail of A to the head of B.
In a similar manner, R can also be obtained by adding A to B, Figure 2—4c.

By comparison, it is seen that vector addition is commutative; in other words, the
vectors can be added in either order, i.e., R=A + B=B + A.
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o
\/R\\/

R=A+B R=B+A
Triangle rule Triangle rule

(@) (b) (©)

Figure 2—4: Triangular Method

2.2.3 Vector Subtraction:

The resultant of the difference between two vectors A and B of the same type may be

expressed as:
R=A-B=A4+(-B) (2-2)
This vector sum is shown graphically in Figure 2—5. Subtraction is therefore defined as a

special case of addition, so the rules of vector addition also apply to vector subtraction.

-B
A
R A BT R’ A
g - -B
(©)

(2) (b)

Figure 2-5: Vector Subtraction

2.3 Forces as Vectors:

e Forces can be fully expressed with magnitude and direction. Hence, they are vectors.
e As a result, the rules discussed in section (2.2) can be applied.

e Not only resultants can be found by adding forces, a resultant force can be resolved
into components as well.
e Basically, we “work backwards” from the Parallelogram law of addition or the triangle

rule of addition to resolve the resultant force vector into components along a two

axes to components as in Figure 2-6.

v v

F / F
F, F
F,
u i
FJl Fﬂ

(@) (b) (©

Figure 2-6: Resolving Vectors Into Components
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Solving for resultant vector or resolving one will transfer the problem from vector addition
(or subtraction) into “Trigonometry”. Therefore, a knowledge of such subject is a necessity

in solving problems.

2.3.1 Lami’s Theorem:

Lami’s theorem states that “if a body is in equilibrium under the action forces, then

each force is proportional to the sin of the angle between the other two forces”. Based on

Figure 2-7,
F F, F,
- - 23
sin(e) sin(f) sin(y) 2-3)

Fy

F;

F;

Figure 2-7: Lami’s Theorem

2.3.2 Law of Cosines and Law of Sines:

Two important trigonometric laws should be presented here; the Law of Cosines and the
Law of Sines. Referring to Figure 2-8:

Law of Sines:

A B C
I A (2-4)
sin(a) sin(b) sin(c)
Law of Cosines:
C=\4*+B*-24B cos(c) (2-5)

Figure 2-8: Law of Sines and Law of Cosines Lengths and Angles
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2.3.3 Examples:

Example (1):
Resolve the force F; into components acting along the # and
v axes and determine the magnitudes of the components.
v 7>
Solution: "
30°
45°
F; =300N
=500N v
Example (2):
Determine the magnitude of the resultant force Fp = F; + F, y
and its direction, measured counterclockwise from the positive
X axis. F; =2501b
Solution:
~30%

45°

F,=3751b

10 Dr. Alshaiji ©
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Example (3):
If the magnitude of the resultant force is to be 500 N, y

directed along the positive y axis, determine the magnitude
of force F and its direction 6.

Solution:

Example (4):

Determine the magnitude of the resultant force Fp = F; + F,
and its direction, measured clockwise from the positive u axis.

70°,7
Solution: / \7>\

/300

F, = 300N
F,=500N v

11 Dr. Alshaiji ©
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Example (5):

The plate is subjected to the two forces at A and B as F,=8kN
shown. If § = 60°, determine the magnitude of the resultant
of these two forces and its direction measured clockwise
from the horizontal.

Solution:

1 o o Y o N o Y o1

FB:6kN
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2.4 Addition of a System of Coplanar Forces Using Scalar Notation:
2.4.1 Using “Angles”:

Referring to Figure (1.9), a vector F can be resolved into two rectangular components Fx

and Fy using the parallelogram law so that F = Fyx + Fy.
Y

(7

> X

F,
Figure 2-9: Resolving a Vector Into Components Using Angles
With the aid of the angle 6, the components of the vector Fcan be presented as:
F.=F cos(0)

F,=F sin(@) (2-6)

2.4.2 Using “Slope™:

The direction of F can also be defined using a ”slope” triangle as shown in Figure 2-10.

Figure 2-10: Resolving a Vector Into Components Using Slope

Using the slope, the components of the vector F can be presented as:

il

(2-7)

2.5 Resultant of Coplanar Forces:

We can represent the components of the resultant force of any number of coplanar forces

symbolically by the algebraic sum of the x and y components of all the forces

(FR )x - ZFx
(FR )y - ZE

(2-8)
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To illustrate, let us try to obtain the resultant force of multiple concurrent forces as shown
in Figure 2-11a using the Cartesian vector notation. Each force is first represented as a

Cartesian vector as presented in Figure 2—1b:

y y y
Ey (Fr)y Fg

F, Fyy )

F, ~. A _
Fa RN t"‘—' 3 Fix 9
x =S > > x » x
\\ 3 (Fr)x
Fi, ¥
F3

(a) (b) (e)

Figure 2-11: (a) Three concurrent forces, (b) x and y components of concurrent forces, (c) Finding Fj from
(£r)x and (),

When (Fz)x and (Fz), are determined, we use Pythagorean theorem to determine the

magnitude of Fg, as shown in Figure 2—11c.
2 2
Fo=J(Fe ) +(F ) (2-9)

The angle that specifies the direction of Fr can be calculated from trigonometry as:

0 =tan™' (F2), (2-10)

(Fe),
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2.5.1 Examples:
Example (1):

If the magnitude of the resultant force acting on the
evebolt is 600 N and its direction measured clockwise from

the positive x axis is # = 30°, determine the magnitude of A
F, and the angle ¢.

Solution:

X

F,= 500N
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Example (2):

Determine the magnitude of the resultant force and its
direction measured counterclockwise from the positive x axis.

Solution:

16 Dr. Alshaiji ©
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Example (3):

Determine the magnitude and direction measured
counterclockwise from the positive x axis of the resultant
force of the three forces acting on the ring A. Take
F; = 500N and 6 = 20°.

Solution:

<

17
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2.6 Problems:

Question (2.1) Question (2.4)

Di

A --500——1

B inmm

/. S0ON -7 G(Tlt)
\ B o j
X
424N 408 N
E;*% 3kN | /\
900
2 kN

; \
/ \

Two forces are applied at point B of beam A4B. L4 k
Determine graphically the magnitude and —s00—-a50~]
direction of their resultant. Determine the x and y components of each of the

forces shown.

Question (2.2) Question (2.5)

120 N

GOIh

40 1b

301b

A stake is being pulled out, of the ground by Determine the resultant of the three forces of

means of two ropes as shown. Question (2.6)

Knowing that a = 30°, determine by solb
trigonometry d
{a) The magnitude of the force P so that the 120 Th

resultant force exerted on the stake is vertical
{(b) The corresponding maguitude of the
resultant.

Question (2.3)

Knowing that ¢ = 75°, determine the resultant of
the three forces shown.

Determine the x and j components of each of the
forces shown.

18 Dr. Alshaiji ©
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Chapter (3): Equilibrium of a Particle

3.1 Condition for the Equilibrium of a Particle
e A particle is said to be in equilibrium if it remains at rest if originally at rest, or has
a constant velocity if originally in motion.
e Static equilibrium is used to describe an object at rest.

e To maintain equilibrium, it is necessary to satisfy Newton’s first law of motion,
which requires the resultant force acting on a particle to be equal to zero. This

condition may be stated mathematically as:

D> F=0 (3-1)
Where Z F is the vector sum of all the forces acting on the particle.
3.2 The Free-Body Diagram:
e To apply the equation of equilibrium, we must account for all the known and
unknown forces which act on the particle.
e The best way to do this is to think of the particle as isolated and “free” from its
surroundings.
® A drawing that shows the particle with all the forces that act on it is called a
free-body diagram (FBD).
3.2.1 Cables and Pulleys:

e Unless otherwise stated, all cables (or cords) will be assumed to have negligible
weight and they cannot stretch.

e Also, a cable can support only a tension or “pulling” force, and this force always
acts in the direction of the cable.

e For any angle 6, shown in Figure 3-1, the cable is subjected to a constant tension
T throughout its length.

Figure 3-1: Cable is in Tension

19 Dr. Alshaiji ©
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3.2.2 Procedure for Drawing a Free-Body Diagram:

e Draw Outlined Shape.

o Imagine the particle to be isolated or cut “free” from its surroundings by

drawing its outlined shape.
e Show All Forces.

o Indicate on this sketch all the forces that act on the particle.

o These forces can be active forces, which tend to set the particle in motion, or
they can be reactive forces which are the result of the constraints or supports
that tend to prevent motion.

e Identify Each Force.

o The forces that are known should be labeled with their proper magnitudes and
directions.

o Letters are used to represent the magnitudes and directions of forces that are

unknown.
3.3 Coplanar Force Systems:
e If a particle is subjected to a system of coplanar forces that lie in the x—y plane, as in
Figure 3—2, then each force can be resolved into its perpendicular components.

e For equilibrium, these forces must sum to produce a zero force resultant, i.e.,

SF, =0
>F, =0

These two equations can be solved for at most two unknowns, generally represented as

(3-2)

angles (or slopes) and magnitudes of forces shown on the particle’s free-body diagram.

F,

F;

F,

Figure 3-2: System of Coplanar Vectors Acting on a Particle

20 Dr. Alshaiji ©
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3.3.1 Examples:
Example (1):

The members of a truss are pin connected at joint O.
Determine the magnitudes of F; and F, for equilibrium. ¥
Set 8 = 60°.

5kN

Solution:

Example (2):

The members of a truss are connected to the gusset plate. If
the forces are concurrent at point O, determine the

magnitudes of F and T for equilibrium. Take 6 = 30°.
8 kN

Solution:

Ans.

21 Dr. Alshaiji ©
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Example (3):

The gusset plate is subjected to the forces of four members.
Determine the force in member B and its proper
orientation @ for equilibrium. The forces are concurrent at

point O.Take F = 12 kN. 8§ kN
Solution:
Ans. F
Example (4):

Determine the tension developed in wires CA and CB
required for equilibrium of the 10-kg cylinder. Take 6 = 40°.

Solution:
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Example (5):

The spring has a stiffness of K = 800 N/m and an unstretched

length of 200 mm. Determine the force in cables BC and BD -]
when the spring is held in the position shown. 5
400 mm
Solution: %
300 mm
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3.4 Problems:

Question (3.1)

[7 1100 mm 200
: |
NI
N |
N I £
960 mm \ I /
W : I T
N | f'/
|' [4
r"'
{
1600 kg

Two cables are tied together at C'and are loaded
as shown. Determine the tension in cables AC
and BC.

Question (3.2)

1200 1b

Knowing that a = 20° determine the tension in
cables AC and BC.

Question (3.3)

|

|

W
/ B
) N/m \/

feaz = 30 N/m

4m

{a) Determine the stretched length in springs AC'
and AZF for equilibrium of the 2-kg block.

(b) The un-stretched length of spring AB is 3 m.
If the block is held in the equilibrium position
shown, determine the mass of the block at .

Question (3.4)

Determine the magnitude & of £ and 3 for
equilibrium. Set 8 = 60°.

Question (3.5)

I‘i 600 mm 4—'

| A = B
250 mm p
cl ¢
 J
Q=480 N

Two cables are tied together at C and loaded as
shown. Knowing that P = 360 N, determine the
tension in cables AC and BC.

Question (3.6)

:\ml

B

Two cables tied together at C are loaded as
shown. Knowing that the maximum allowable
tension in each cable is 800 N, determine:

(&) the magnitude of the largest force P that can
be applied at C.

(b) the corresponding value of «.
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Chapter (4): Force System Resultants

4.1 Moment of a Force — Scalar Formulation:
e When a force is applied to a body it will produce a tendency for the body to rotate
about a point that is not on the line of action of the force.

e This tendency to rotate is sometimes called a torque, but most often it is called the

moment of a force or simply the moment.

(b) (¢)

Figure 4-1: Force and Moment Arms

For example, consider a wrench used to unscrew the bolt in Figure 4-1.
e If a force is applied to the handle of the wrench it will tend to turn the bolt about
point O (or the z axis).

e The magnitude of the moment is directly proportional to the magnitude of F' and the

perpendicular distance or moment arm d.

e The larger the force or the longer the moment arm, the greater the moment or

turning effect.

e Note that if the force F is applied at an angle 8 that is not 90 degrees, Figure 4-1b ,
then it will be more difficult to turn the bolt since the moment arm d’= dsin (6)
will be smaller than .

e If F is applied along the wrench, Figure 4-1c, its moment arm will be zero since the
line of action of F will intersect point O (the z axis). As a result, the moment of F

about O is also zero and no turning can occur.
4.1.1 Moment Magnitude, Direction, Sense of Rotation, & Resultant Moment:

Magnitude:

The magnitude of My is expressed as:

M, =Fd (4-1)
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where d is the moment arm or perpendicular distance from the axis at point O to the line of
action of the force. Units of moment magnitude consist of force times distance (N-m or
1b—ft).

Direction & Sense of Rotation:

e The direction of My is defined by its moment axis, which is perpendicular to the

plane that contains the force F and its moment arm d.

e The right—hand rule is used to establish the sense of direction of M.

e According to this rule, the natural curl of the Moment axis

fingers of the right hand, as they are drawn ‘

towards the palm, represent the rotation, or if @

no movement is possible, there is a tendency !

for rotation caused by the moment. QT"\,MO
e As this action is performed, the thumb of the d o

right hand will give the directional sense of
Mo, Figure 4-2a.

. . Sense of rotation
e Notice that the moment vector is represented (a)

three—dimensionally by a curl around an

arrow. d

MO
e In two dimensions this vector is represented F (\O

only by the curl as in Figure 4-2b.

e Since in this case the moment will tend to
cause a counterclockwise rotation, the moment (b)

vector is actually directed out of the page. Figure 4-2: Moment Direction & Sense of Rotation
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Resultant Moment:

e For two—dimensional problems, where all the forces lie within the x—y plane, Figure
4-3, the resultant moment (Mz)o about point O can be determined by finding the
algebraic sum of the moments caused by all the forces in the system.

e As a convention, we will generally consider positive moments as counterclockwise
since they are directed along the positive z axis (out of the page) and Clockwise

moments will be negative.
e Using this sign convention, the resultant moment in Figure 4-3 is therefore:
(MR )0 =Fd —-Fd,+Fd,
If the numerical result of this sum is a positive scalar, (1/z)o will be a counterclockwise

moment (out of the page); and if the result is negative, (Mz)o will be a clockwise

moment (into the page).

F, Y
F,
dz MZ M]%
| W
0O X
h, =
ds M,
F;

Figure 4-3: Resultant Moment
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4.1.2 Examples:

Example (1):

For each case illustrated in Fig. 44, determine the moment of the
force about point O.

A
2 ft
A \/%
or— {30° Y401
4 wu I
! 4ft ! 4
2 cos 30° ft
(c)
2]
-y = —
Im
------ 7kN
I 31t |
\ ‘ 4m
0 /' ) T
1ft a5° 1 su_lﬁS" ft
_____________ 60 Ib AN\
(d) 0 (e)
Fig. 44
Solution:
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Example (2):

Determine the moment about point A of each of the three
forces acting on the beam. R=aR1 f2=5001b

Solution: A )

Fy=1601b

Example (3):

The crane can be adjusted for any angle 0° = § = 90° and
any extension 0 <= x =< 5m. For a suspended mass of
120 kg, determine the moment developed at A as a function x /\

of x and 6. What values of both x and 6 develop the
maximum possible moment at A? Compute this moment. 9m -

Neglect the size of the pulley at B.

Solution:
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Example (4):

. Fy =250N 39 Fp = 300N
Determine the moment of each of the three forces about ! i -
point A. i !
—2 m: | 3 m
Solution:
4m
B 4 5
3
F;=500N
Example (5):

The towline exerts a force of P = 4kN at the end of the
20-m-long crane boom. If 6 = 30°, determine the
placement x of the hook at A so that this force creates a
maximum moment about point 0. What is this moment?

P=4kN

Solution:
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4.2 Moment of a Couple:
e A couple is defined as two parallel forces that have the same magnitude, but
opposite directions, and are separated by a perpendicular distance d, Figure 4—4.

e Since the resultant force is zero, the only effect of a couple is to produce an actual

rotation, or if no movement is possible.

F
-

] >
—F

Figure 4-4: Moment of a Couple
4.2.1 Scalar Formulation:

e The moment of a couple, M, Figure 4—4, is defined as having a magnitude of
M =Fd (4-2)
e F'is the magnitude of one of the forces and d is the perpendicular distance or

moment arm between the forces.

e The direction and sense of the couple moment are determined by the right—hand
rule, where the thumb indicates this direction when the fingers are curled with the

sense of rotation caused by the couple forces.

e In all cases, M will act perpendicular to the plane containing these forces.
4.2.2 Examples:
Example (1):

Determine the resultant couple moment of the three couples acting

on the plate in Fig. 4-30.
F,=4501b Al —

Solution: dy =31t } .-':" e

Fp =200 lb" Fy=3001b

Fig. 4-30
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Example (2):

A twist of 4 N  m is applied to the handle of the screwdriver.
Resolve this couple moment into a pair of couple forces F
exerted on the handle and P exerted on the blade.

Solution:

Example (3):

The ends of the triangular plate are subjected to three
couples. Determine the plate dimension d so that the
resultant couple is 350 N - m clockwise.

Solution:

Example (4):

Two couples act on the beam. If F =125 b, determine the result-
ant couple moment.

Solution:

100 N

30°

100N

i 600 N

200N

200 1b

T2

“* 600 N

200N

o F

1.5 ft

A&

/y
1.25 ft 0
22 Ao

moan

‘Tf;—b 2001b

L—Z ft
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Example (5):

150 mm ——150 mm

If the valve can be opened with a couple moment of 25 N + m, determine
the required magnitude of each couple force which must be applied
to the wheel.

Solution:

Example (6):

Determine the required magnitude of force F if the
resultant couple moment on the frame is 2001b-ft,
clockwise.

Solution:
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4.3 Simplification of a Force and Couple System:

Sometimes it is convenient to reduce a system of forces and couple moments acting
on a body to a simpler form by replacing it with an equivalent system, consisting of

a single resultant force acting at a specific point and a resultant couple moment.

A system is equivalent if the external effects it produces on a body are the same as

those caused by the original force and couple moment system.

In this context, the external effects of a system refer to the translating and rotating
motion of the body if the body is free to move, or it refers to the reactive forces at
the supports if the body is held fixed.

This demonstrates the principle of transmissibility, which states that a force acting
on a body (stick) is a sliding vector since it can be applied at any point along its line
of action.

If the force is to be moved NOT along the line of action, it can be moved provided a

couple moment A/ is added to maintain equivalent system.

4.4 System of Forces and Couple Moments:

A system of several forces and couple moments acting on a body can be reduced to an

equivalent single resultant force acting at a point O and a resultant couple moment.

(FR )x > ZFr
(FR )y = ZE (4-3)
(MR)O ZZMO +ZM

The first and second equations states that the resultant force of the system is

equivalent to the sum of all the forces
The third equation states that the resultant couple moment of the system is

equivalent to the sum of all the couple moments ZM plus the moments of all the

forces ZM o about point O.
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4.4.1 Examples:
Example (1):

Replace the force and couple system shown in Fig. 4-37a by an
equivalent resultant force and couple moment acting at point O.

o
=

Solution:

g

>
| =
=

— 0.2 m

0.3 m
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Example (2):

Replace the force and couple system by an equivalent force ¥

and couple moment at point O. 3m—
8kN-m
9

Solution: \

F
—23 ln——|

4kN

4m
S5m
13f]12 60°
5

—44
|——4m

6 kN

Example (3):

Replace the force system acting on the beam by an

equivalent force and couple moment at point A. 3kN
25kN L5KkN 30
Solution: A
3 \
| %\ B
A}l ‘ ‘ -
P 2m— 4m [ 2m—
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Example (4):

Replace the force system acting on the post by a resultant
force and couple moment at point O.

Solution:

Example (5):

Replace the two forces by an equivalent resultant force and
couple moment at point O. Set I = 20 Ib.

Solution:

37 Dr. Alshaiji ©




College of Department of Civil CE 161 / B 111
Technological Studies Engineering Technology Engineering Statics

4.5 Reduction of Distributed Loads:
4.6 Loading Types:

The loading on beams and frames can be categorized to (Figure 4-5):

e Concentrated Load
o Concentrated Force

o Concentrated Moment

e Distributed Load
o Uniformly Distributed Load (UDL)
o Linearly Varying Distributed Load (LVDU)

P
| é | L |
BY ) &
Al |C B N
—afts Al 5 i,‘ I
. L 2L h[[%‘
3 !
N
w
t""()
\ \I\I\l\!\ﬂ\m
Al B B
ohin A | b
|
i

T

Figure 4-5: Loading On Beams

e When the above loading types are combined on a single structure, they can be
reduced single concentrated force (equivalent) that will produce the same internal

reactions as if the original loading was applied on the structure.
e The distributed loads shown in Figure 4-5, can be reduced to concentrated forces
with a magnitude equal to area under the loading diagram.

e The line of action of this concentrated force passes through the geometric center of
the area under the loading diagram. (L /2 for rectangular load, L/3 for triangular

load from the higher value of the triangle)
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4.6.1 Examples:
Example (1):

The loading on the bookshelf is distributed as shown.

Determine the magnitude of the equivalent resultant Lif ¥

location, measured from point O. 2 1ot i | | 3.5 1b/tt
Yo lvliwly

Solution:

4’7 v | |- v | r
—— L s i i | 41t 150 4‘
! .y 3 i 3 | |

| T |  mm WY A ol
S || | S | | || | | oLy ¥ya Ve e || |
| |

Example (2):

Replace the distributed loading with an equivalent resultant
force, and specify its location on the beam measured from
point O.

Solution:
|
L " | i | |
\ \
\ ‘ ‘
| |
Example (3):
Replace the loading by an equivalent force and couple 200 N/m
moment acting at point O. m\
Y
Solution: Of =
‘L 4m Im J|
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Example (4):

800 Ib /£t
Replace the loading by an equivalent resultant force and ! 500 Ib it
specify its location on the beam, measured from point B.
Solution: |
. L
} 12 ft } 9 ft
Example (5):
The beam is subjected to the distributed loading. Determine |.; b 4.|
the length b of the uniform load and its position a on the ] A0lb/it

beam such that the resultant force and couple moment
. . Y A,
acting on the beam are zero. ‘

- — ]

Solution: i W
60 Ib/ft

10 ft I 6 ft ‘
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4.7 Problems:

Question (4.1)

201b

(a) A 20-1b force is applied to the control rod AB
as shown. Knowing that the length of the rod is 9

in. and that & = 25°, determine the moment of
the force about Point 5.
{(b) If the moment of the 20-1b force about B is

120 1b « in. clockwise, determine the value of a.

Question (4.2)

The handle of the hammer is subjected to the
force of F = 20 1b. Determine the moment of this
force about the point A.

Question (4.3)

1
! \
| i

The moment exerted about point £ by the weight
1g 299 in-lb. What moment does the weight exert
about point S7

Question (4.4)

121h

121 16in.

Ny

21lh

£

FB

I d |
A plate in the shape of a parallelogram is acted
upon by two couples. Determine:

(2) the moment of the couple formed by the two
21-1b forces

(b) the perpendicular distance between the 12-1b
forces if the resultant of the two couples is zero
(¢) the value of «if the resultant couple is 72

1b-in. clockwise and  is 42 in.

Question (4.5)

1

2001
3t
200 Ib
3
o l x
6t e
500 T

Determine the sum of the moments about point O
by the couple and the 500 1b force.

Question (4.6)

2001b

2001b

4 ft

Two couples act on the heam as shown.
Determine the magnitude of F so that the
resultant couple moment is 300 Ib-ft
counterclockwise. Where on the beam does the
resultant couple act?
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Chapter (5): Elementary Structural Analysis

5.1 Introduction:

Structural analysis can be defined as the process of finding internal forces developed in
structural members (such as beams, frames, trusses, columns, cables, etc.) due to external
applied loads. The determination of such loads will aid the design process of the structure.

In this chapter, we will start with loads on structural beams.
5.2 Loading Types:

The loading on beam and frames can be categorized to (Figure 5-1):

e C(Concentrated Load
o Concentrated Force

o Concentrated Moment

e Distributed Load
o Uniformly Distributed Load (UDL)
o Linearly Varying Distributed Load (LVDU)

| L \ L |
BY 2 2
Al C A \
Al o ] |C
. L aL M,
3 !
w
w
{l'o
" l
Al | B B
| X

e A
|
|

—

Figure 5-1: Loading types on beams
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5.3 Support Types:
Supports on beams transfer the loads to the following structural member (usually a column)
Three major types (Figure 5-2):

e Roller & Vertical reaction only

e Hinge = Vertical and horizontal reaction

e Fixed = Vertical and horizontal reaction + a bending moment

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS

Type of Contact and Force Origin Action on Body to Be Isolated

1. Flexible cable, belt,

chain, or rope i ___ == _[E L Force exerted by
Weight of cable O e / a flexible cable is

lioibl T always a tension away
neghigiie e L from the body in the

Weight of cable 6 direction of the cable.

not negligible T

2. Smooth surfaces A

Contact force is
compressive and is
normal to the surface.

N,

.& ~
F
y //%\_/
/
R
~
Roller, rocker, or ball

}/
~
™~
~
ars
~
; ~
~
N
NI support transmits a
? compressive force
N
N%/

Rough surfaces are
capable of supporting
a tangential compo-
nent F (frictional
force) as well as a
normal component
N of the resultant
contact force R.

3. Rough surfaces

4. Roller support

=
¢ ge
(D)

normal to the
supporting surface.

5. Freely slidi id
reely shding guide Collar or slider free to

move along smooth
guides; can support
force normal to guide
only.

. e
L]
N
—

N

Figure 5-2: Beam Reaction Types
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MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS (cont.)

Type of Contact and Force Origin

Action on Body to Be Isolated

6. Pin connection

Pin free to turn A freely hinged pin

9

¢--

connection is capable
of supporting a force
in any direction in the
plane normal to the
pin axis. We may
either show two
components R, and
R, or a magnitude R
and direction 8. A pin
not free to turn also
supports a couple M.

7. Built-in or fixed support

A A

or

“—Weld

A built-in or fixed
support is capable of
supporting an axial
force F, a transverse
force V (shear force),
and a couple M
{bending moment) to
prevent rotation.

8. Gravitational attraction

HiHH

The resultant of
gravitational
attraction on all
elements of a body of
mass m is the weight
W =mg and acts
toward the center of
the earth through the
center mass G.

9. Spring action ) .
Linear Nonlinear

Neutral F F
[

position | Hardening

. | F=ke
H_’( F ! L
]‘\'\‘\'\‘\i\"‘"* | | Softening

Spring force is tensile
if spring is stretched
and compressive if
compressed. For a
linearly elastic spring
the stiffness £ is the
force required to
deform the spring a
unit distance.

Figure 5-3: Beam Reaction Types (Continued)
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5.4 Beam Types:
Beams can be divided into (Figure 5-4):

e Statically determinate beams:
e Simply supported beams
¢ One-sided over-hanging beam
e Two-sided over-hanging beam
e Cantilever beam

e Statically indeterminate beams:
e Continuous beam
e End-supported cantilever

e Fixed at both ends

(o (o |
. _Q© O
Simple
Continuous
| |
O
Cantilever
End-supported cantilever
[e
®
Combination Fixed
Statically determinate beams Statically indeterminate beams
30 KN/ 80 kN 120 1b 300 Ib 120 1b
' [ [ J l C D C D E
Al — Y |B Al | B
| |
5 3m——f— ! 0 23 | 20in. 15in.

Figure 5—4: Beam types
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5.5 Beam Reactions:
e Reactions on beams are developed due to the applications of the various loads on the
beam.

e The reactions can be calculated (determinate beams only) by applying the three

equations of equilibrium after drawing the free body diagram of the beam.

e The three equations of equilibrium are:

2F. =0
2F, =0 (5-1)
> M =0

— = g -

-
=]
=
[45]
=
lﬁu—*

pin
FJ*'
M
g F, _<F —
fixed support
F,

Figure 5-5: Beam reaction types

5.6 Sign Convention:

The positive sign convention used throughout the course is summarized in Figure 5-6. The
positive x—direction is taken to the right, the positive y—direction is taken upward, and the

positive moment is taken in the counter—clockwise direction.

1
A)\* E,

Figure 5-6:The positive sign convention for forces and moment
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5.7 Examples:
Example (1):

The 450-kg uniform I-beam supports the load shown.
Determine the reactions at the supports.

} 5.6m «—24m

Solution:
\
1 i) oAl A N AN N R i i
|
|
Example (2):
Determine the reactions at A and B for the beam
subjected to the uniform load distribution.
Ans. R, = 1.35 kN, Ry = 0.45 kN
6 kN/m
A ' ' IB
~— 300 mm —-=— 300 mm —>-|
Solution:

47 Dr. Alshaiji ©




College of Department of Civil CE 161 / B 111
Technological Studies Engineering Technology Engineering Statics

Example (3):

5/97 Determine the reactions at A for the cantilever beam
subjected to the distributed and concentrated loads.
Ans. A, = 0,A, = 8kN, M, = 21 kN'm

y
2 kN :
4 kN/m l/ L

Al : ]
| | 1

= 3m < 1.5 m === 1.5 m7‘4

Solution:

Example (4):

5/100 Calculate the support reactions at A and B for the
beam subjected to the two linearly varying load
distributions.

6 kN/m

4 kN/m

A!:o‘»:j:g:. PR Cpar o gy~ e !3

—t ‘ -

L‘——4m T 6 m ]I

Solution:
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Example (5):

5/94 Determine the reactions at the supports A and B for
the beam loaded as shown.

— Wy
| ijl\h\r\]
AT o B
L e o N
2 2 i

Solution:
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For the following examples, calculate the reactions at the frame supports.

Example (6):
35 kN/m
HEEE
15m
A B L
L;IO m4‘
Solution:

200 kN
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Example (7):
18.2 kN/m
N O O e
6lg 364 kKN/m
| I
6.l m
—a oA
! 12.2m !
Solution:
51
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Example (8):
20 kN/m

ey NN RN

Sm ‘ / \

100 kN —

Sm

- A "4

4m ! 12 m ! 4 m—
Solution:
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5.8 Internal Forces in Structural Members:

Internal forces were defined as the forces and couples exerted on a portion of the structure

by the rest of the structure.

—

,@M M@_‘i‘il —

(a) Positive Internal Axial Force, Shear (b) External Forces Causing Positive
and Bending Moment at a Section Axial Force

(c) External Forces Causing Positive {(d) External Forces Causing Positive
Shear Bending Moment

Figure 5-7: Sign convention for axial force, shear force, and bending moment

5.8.1 Procedure for Analysis

The procedure for determining internal forces at a specified location on a beam can be

summarized as follows:

1- Compute the support reactions by applying the equations of equilibrium and
condition (if any) to the free body of the entire beam. In cantilever beams, this step
can be avoided by selecting the free, or externally unsupported, portion of the beam
for analysis.

2- Pass a section perpendicular to the centroidal axis of the beam at the point where
the internal forces are desired, thereby cutting the beam into two portions.

3- Although either of the two portions of the beam can be used for computing internal
forces, we should select the portion that will require the least amount of
computational effort, such as the portion that does not have any reactions acting on
it or that has the least number of external loads and reactions applied to it.

4- Determine the axial force at the section by algebraically summing the components in
the direction parallel to the axis of the beam of all the external loads and support

reactions acting on the selected portion.
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5-

Determine the shear at the section by algebraically summing the components in the
direction perpendicular to the axis of the beam of all the external loads and reactions
acting on the selected portion.

Determine the bending moment at the section by algebraically summing the
moments about the section of all the external forces plus the moments of any
external couples acting on the selected portion.

To check the calculations, values of some or all of the internal forces may be
computed by using the portion of the beam not utilized in steps 4 through 6. If the
analysis has been performed correctly, then the results based on both left and right

portions must be identical.
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For the following examples, determine the axial forces, shears, and bending moments at

points A and B of the structure shown.

5.9 Examples:
Example (1):
60 kN 80 kN S0kN
l A A‘S(}” l B
LT 2
! Sm !2m! 3m ! 5m !2m! 3111«‘
Solution:
Example (2):
5k 10k
A l B
| 6 ft ! 6 ft ! 61t ! 61t {
Solution:
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Example (3):
A B
wgo
‘ ‘ 100 ‘
4 m | 4 m | 4 m | 4 m
Solution:
Example (4):
12k
70 k-t
A B f)
5 ft——5 ft 5 fit ! 5ft~‘
Solution:
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Example (5):
80kN -m 100 W EN
4 N kN-m . 3
37 =z J 4 J AT Yt}
S I ol
P—4m | Im—+—3 m ‘ 6m 2 m—2 m 75 kN
Solution:
Example (6):
100 kN - m 150 kN

Solution:
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5.10 Problems:

Question (5.1}

~—04m—
| 0.6 m

0.6 m

The magnitude of the triangular distributed
load is wo = 2 kN/m. Determine the internal
forces and moment at A4.

Question (5.2}

400
) 100 Ib o
| 900 ft-Ib
A r\‘
—— O p— *
=3 ft—f—d ft—f—3 ft —f—d it —

Determine the internal forces and moment at

A.
Question (5.3)

02 m-- .-0.2m

o

The pipe has a fixed support at the left end.
Determine the internal forces and moment at
A

Question (5.4)

|

I lOOmm*I ||
375 mm

2R
Model the ladder rung as a simply supported
(pin supported) beam and assume that the 750
N load exerted by the person’s shoe is
uniformly distributed. Determine the internal
forces and moment at A.

Question (5.5)

oon[ ][]
=

3 ft—
| aft

1

A B

i
%

5t
6 ft

Determine the internal forces and moment at 4
and B,

Question (5.6)
lz4o Ib

fL\nL A B
—3 ft—
2 ft—} 41t i

Determine the internal forces and moment at A
Question (5.7)

I,

A

1180 Ib

_&

51t
41t

200 lb/ﬁ{

0

_

6t [
8ft

! 41t

Determine the internal forces and moment at
A.

Question (5.8)

w

Phidebely il biibis
& 4

| L
|
For the beam shown, What is the shear force

and bending moment at mid-span? Assume
support A is a hinge and B is a roller.
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Chapter (6): Truss Analysis

6.1 Introduction:

Truss is an assemblage of straight members connected at their ends by flexible
connections to form a rigid configuration. Because of their light weight and high strength,
trusses are widely used, and their applications range from supporting bridges and roofs of
buildings to being support structures in space stations. Modern trusses are constructed by
connecting members, which usually consist of structural steel or aluminum shapes or wood
struts, to gusset plates by bolted or welded connections.

If all the members of a truss and the applied loads lie in a single plane, the truss is
called a plane truss. Plane trusses are commonly used for supporting decks of bridges and

roofs of buildings.

Pratt truss Fink truss

Figure 6-1: Common roof trusses
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6.2 Assumptions for Analysis of Trusses:

The analysis of trusses is usually based on the following simplifying assumptions:

1-

2-
3-

All members are connected only at their ends by frictionless hinges in plane trusses
and by frictionless ball-and—socket joints in space trusses.

All loads and support reactions are applied only at the joints.

The centroidal axis of each member coincides with the line connecting the centers of

the adjacent joints.

6.3 Method of Joints:

6.3.1 Procedure for Analysis

The following step—by—step procedure can be used for the analysis of statically determinate

simple plane trusses by the method of joints.

1-

2-

Check the truss for static determinacy. If the truss is found to be statically
determinate and stable, proceed to step 2. Otherwise, end the analysis at this stage.
Determine the slopes of the inclined members (except the zero—force members) of the
truss.

Draw a free-body diagram of the whole truss, showing all external loads and
reactions.

Examine the free-body diagram of the truss to select a joint that has no more than
two unknown forces (which must not be collinear) acting on it. If such a joint is
found, then go directly to the next step. Otherwise, determine reactions by applying
the three equations of equilibrium and the equations of condition (if any) to the free
body of the whole truss; then select a joint with two or fewer unknowns, and go to
the next step.

a. Draw a free-body diagram of the selected joint, showing tensile forces by arrows
pulling away from the joint and compressive forces by arrows pushing into the joint.
It is usually convenient to assume the unknown member forces to be tensile.

b. Determine the unknown forces by applying the two equilibrium equations (x
and y direction). A positive answer for a member force means that the
member is in tension, as initially assumed, whereas a negative answer
indicates that the member is in compression.

If at least one of the unknown forces acting at the selected joint is in
the horizontal or vertical direction, the unknowns can be conveniently
determined by satisfying the two equilibrium equations by inspection of the

joint on the free-body diagram of the truss.
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6- If all the desired member forces and reactions have been determined, then go to the
next step. Otherwise, select another joint with no more than two unknowns, and
return to step 5.

7- If the reactions were determined in step 4 by using the equations of equilibrium and
condition of the whole truss, then apply the remaining joint equilibrium equations
that have not been utilized so far to check the calculations. If the reactions were
computed by applying the joint equilibrium equations, then use the equilibrium
equations of the entire truss to check the calculations. If the analysis has been

performed correctly, then these extra equilibrium equations must be satisfied.

For the following examples, find the forces in the members of the truss and indicate if the

member is in tension or compression.
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6.3.2 Examples:
Example (1):

Solution:

600 N
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Example (2):

Solution:

6001b 800 1b
By C o0°
Cf
4 ft

b
5
]
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Example (3):

B c]]
O % ||——
2m

D
A _

]
6 kN l
8 kN
Solution:
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Example (4):

Solution:
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6.4 Method of Sections:

6.4.1 Procedure for Analysis:

The following step—by—step procedure can be used for determining the member forces of

statically determinate plane trusses by the method of sections.

1.

Select a section that passes through as many members as possible whose forces are
desired, but not more than three members with unknown forces. The section should
cut the truss into two parts.

Although either of the two portions of the truss can be used for computing the
member forces, we should select the portion that will require the least amount of
computational effort in determining the unknown forces. To avoid the necessity for
the calculation of reactions, if one of the two portions of the truss does not have any
reactions acting on it, then select this portion for the analysis of member forces and
go to the next step. If both portions of the truss are attached to external supports,
then calculate reactions by applying the equations of equilibrium and condition (if
any) to the free body of the entire truss. Next, select the portion of the truss for
analysis of member forces that has the least number of external loads and reactions
applied to it.

Draw the free-body diagram of the portion of the truss selected, showing all external
loads and reactions applied to it and the forces in the members that have been cut
by the section. The unknown member forces are usually assumed to be tensile and
are, therefore, shown on the free-body diagram by arrows pulling away from the
joints.

Determine the unknown forces by applying the three equations of equilibrium. To
avoid solving simultaneous equations, try to apply the equilibrium equations in such
a manner that each equation involves only one unknown. This can sometimes be
achieved by using the alternative systems of equilibrium equations (Sum of moment
equations) instead of the usual two—force summations and a moment summation
system of equations.

Apply an alternative equilibrium equation, which was not used to compute member
forces, to check the calculations. This alternative equation should preferably involve
all three member forces determined by the analysis. If the analysis has been

performed correctly, then this alternative equilibrium equation must be satisfied.
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For the following examples, use the method of sections to solve for the required members

(indicated by x) and state whether the members are in tension or compression.

Example (1):

{ 4216 ft=24 ft ‘

Solution:
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Example (2):

30k

A B e
25k 25K 25Kk 25Kk
. 4.at 20 ft = 80 ft |

Solution:
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Example (3):
8000 1b
4000 1b 5000 1b
A B l Cl D E Fl G

Zo: (@ B @ g T
12 ft
@ g 3 3 3 —L

‘L ‘K ‘J ‘1’ ‘H

9 fl——9 o9 ft—t— ft—f—9 ft——9 ft

Members: EI, JI

Solution:
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Example (4):

Members: FE, EC

Solution:
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6.5 Problems:

Question (6.1)

300 1b

=
e

20 in.

e

C

! 48 in.

1
17 in.

Using the method of joints, determine the force
in each member of the truss shown. State
whether each member is in tension or
compression.

Question (6.2)

600 1b

300 Ib TR

By A l e IE
Lcl ft ! 8t | 8 {t ! 4l't~J

Using the method of joints, determine the force
in each member of the truss shown. State
whether each member is in tension or
compression.

Question (6.3)

_I

3m

L

E

)
|

A (o
o

@ o
C

Using the method of joints, determine the force
in each member of the truss shown. State
whether each member is in tension or
compression.

Assume the loads F; = F2 = 8 kN.

Question (6.4)

-
N\

<— 4 panels @ 2.4 m = 9.6 m —|

Using the method of sections, determine the
force in members CD and DF. State whether
each member is in tension or compression.

Question (6.5)

6250t~ 1250t 125ft 1250t 1251
Bl nl 1| H| J|
)/ \/\\//\\/\//\
J
J_ \
C
| |
"125 i wsn,wau 175" 50t

GO0 Th GOOO Th
Using the method of sections, determine the
force in members CF, DE and DF. State
whether each member is in tension or
compression.

Question (6.6)

<3 m-»l--:?; m—-l-(-.'} m->|<-3 m -)-l

10 kN J10 kN J10 kN J10 kN

ot

\ =
— H

/

N

Using the method of sections, determine the
force in members CD and DF. State whether
each member is in tension or compression.

TI>

5m

) e)

Q.

3

71

Dr. Alshaiji ©



College of Department of Civil CE 161 / B 111
Technological Studies Engineering Technology Engineering Statics

Chapter (7): Geometric Centroids

7.1 Introduction:

e The centroid represents the geometric center of a body.

e This point coincides with the center of mass or the center of gravity only if the

material composing the body is uniform or homogeneous.

¢ Finding the centroid of an area has many usages in engineering.

e The locations of centroids are usually tabulated in engineering references. (Figure
7-1)

e In the following section, we look at “Composite Shapes” and try to find their

centroids.

=]

“

pS

I I
>

=
>\
pS

I
T
>
=

|

I EA . : [——

4 h h

2 C 1 X
x Al = pum—

Circular sector area Quarter circle area Semicircular area Rectangular area Triangular area

Figure 7-1: Centroidal Locations For Common Geometric Shapes

7.2 Composite Shapes:

A composite shape consists of a series of connected “simpler” shapes, which may be
rectangular, triangular, semicircular, etc.

Such a shape can often be sectioned or divided into its composite parts and, provided
the area and location of the center of gravity of each of these parts are known, the
centroid for the entire composite shape can be found.

We apply the following

Where:

x : the distance from the local centroid of the “simple” shape to the y—axis (x moment
arm)

y : the distance from the local centroid of the “simple” shape to the x—axis (y moment
arm)

x : is the x—coordinate of the centroid location

y : is the y—coordinate of the centroid location

A : is the area of the “simple” shape
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7.3 Procedure of Calculating Centroid Location:

The location of the center of the centroid of a composite geometrical object represented by

an area can be determined using the following procedure.

¢ Composite Parts.

o

Using a sketch, divide the area into a finite number of composite parts that
have simpler shapes.

If a composite shape has a hole, then consider the composite shape without
the hole and consider the hole as an additional composite part having negative

area.

e Moment Arms

o

Establish the coordinate axes on the sketch and determine the coordinates x,

y of the center centroid of each part.

e Summations

(@)

O

Determinex , j by applying the centroid equations (7-1).
If an area is symmetrical about an axis, the centroid of the area lies on this
axis.

If desired, the calculations can be arranged in tabular form.
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7.4 Examples:
Example (1):
v
Locate the centroid of the plate area shown in Fig. 9-17a.
Solution:

2ft

X
2 ft 3 ft—
i 1ft
(@)

Fig. 9-17
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Example (2):

Locate the centroid (%, ¥) of the cross-sectional area
of the channel.

Solution:

f
lin.al ngn.—-‘ Lin.

Example (3):

*9-52. Locate the centroid y of the cross-sectional area of
the concrete beam.

Solution: 3y [

27 in.

6in.

Example (4):

9-54. Locate the centroid ¥ of the channel’s cross-
sectional area.

Solution:
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Example (5):

Locate the centroid y of the cross-sectional area of
the built-up beam.

Solution:

6 in.

Example (6):
Locate the centroid (X, y) of the composite area.

Solution:
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7.5 Problems:
Question (7.1) Question (7.5)
y y
R e 0

| |
I n
h

Let the dimensions £ =6 in, ¢ = 14 in, and »
= 18 in. Determine the x coordinate of the 120 mm
centroid.

Bonus: Do problem (7.1) symbolically.

I C ! b

Question (7.2) x

Y ‘-‘_ b _—‘

If the cross-sectional area of the beam is 8400

x mm? and the y coordinate of the centroid of the
100mm |0t area is (¥ =90mm ) what are the dimensions &
l and A?
—— X
uestion (7.6
50 mm l4(JL}m Q ( ) b%

—200 mm —]

Determine the x coordinate of the centroid.

Question (7.3)

y

~|2in
8in / /N
3in "\h’ S X
| 5
— Gin l+-3 in Sin 5in—==3in—~
10 Determine the x and y coordinate of the

. . ; id of tt ! -section.
Determine the x and y coordinate of the centrgid Qf the geam's cagss-sectign

centroid. Question (7.7)
Question (7.4) ¥

11m
48°
-

07
|-—12,5 m——{

~1

10in

Determine the x and y coordinate of the
airplane’s vertical stabilizer.

200

e
Determine the x and y coordinate of the
centroid.
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Chapter (8): Useful Formulas

8.1 Geometric Properties of Line and Area Elements:

Centroid Location

y
L=206r

7'\9
)

\_ 7sin @
[

Circular arc segment

Centroid Location

U2 rsin8
38

Circular sector area

Area Moment of Inertia

I=4r*®-sin2)0

L=5r*@+1isin2)0

I :%7151’4
1 :#ﬂ:r4
Quarter and semicircle arcs
F—a— A=lra+b ¥ 4o 2
— -2
s o b= bt
T X
J_l |T\ 1{2a+ b h /
I b 1 3\a+b y
= kot
Trapezoidal area Semicircular area
v
2
F—b—| A=%ab A=7r
Jl B % I=qmrt
za x :
\~~.l_ b C
I =1tm*
3 Yy~ 4
gb
Semiparabolic area Circular area
1 ¥ A =0bh
i f e
[’l C X I,( = Ebh
1
| |
' b ' L= Ln?
Exparabolic area Rectangular area
[—a
A= Lbh
——
h C } -
i el L= d5bh
A=tab | b T
2
o
Parabolic area Triangular area
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Trapezoid

Square Rectangle

—4a— a a

Perimeter: P=a+b+c+d

A[aerjh
2

Perimeter: P =4a Perimeter: P =2(a+ b)

Area: A=a’ Area: A=ab Area:
Parallelogram Circle Circular Sector
/ 1
/i Y |
i
/i / i,
a =

. . nre
Perimeter: P=2(a+b) Perimeter: P=27zr=xD Arch Length: L = O3
Area: A=ah Area: A== Ll Sector Area: A= m“?
4 360

Circular Ring Right Triangle

Area: A= ﬁr(R2 = f‘z) Perimeter: P=a+b+c¢ Perimeter: P=a+b+c¢

Area: A= a_h Area: A= a?h

Pythagorean theorem:

S =a’+b’
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Cube Rectangular Solid

Surface Area:

Surface Area: 4 =6a"

A=4zr
Volume:
Volume: V=d Volume: V =abc - 4zr
3
Cylinder Right Cone Frustum of a Cone

Surface Area: Surface Area: Area:
A=2zr(r+h) A=zr(r+8§) A:;;[Q(R—r)+(1€2—r3)+RS]
S=r’+i (Y
Q=+ R—r
S=y(R-r) +H*
5 5 Ei"zh r zh 2
Volume: V =zrh Volume: V= = Volume: V= T(r +rR+R)
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8.2 Center of Gravity and Mass Moment of Inertia of Homogenous Solids:

Hemisphere
I, =1, =0259m" I = 3mi

Thin Circular disk
_ | _ | _3
I”—Zmrz I, = imrz I”_Zm"z

I,‘CC

Z
al
V= arih T
e K
G 2
h Y
/ ?
; i
Cylinder

IJGC :I

= 13 mG3rP+ R =5 mP

Cone
= Zm@P+ 1% L= Zm

I

xx = Iyy

.
. —
Thin plate
I, = 1'—2 mb? I, = 11—2 ma’® I, = l'—zm(a2+ b
z
T\ T
I
2
#\ G
)h\
2
J\ Sy
x Slender Rod Y
Ly=ILy=lmt? Ly =1ITy=1tm¢*L,=0
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8.3 Fundamental Equations of Statics:

Cartesian Vector

A=Aj+ Aj+ Ak

Magnitude
A=VAI + A + A
Directions
A A, A A
w, = =i+ i+ ik

A A A A
= cos ai + cos Bj + cos yk

cos’a + cos’ B + cos’y =1
Dot Product

A-‘B = ABcos @
= A,B, + A,B, + A,B,

Cross Product

i j Kk
C=AxB=|A4, A, A,
B, B, B,

Cartesian Position Vector
r=(x—x)i+ (y»—yi+t (- u)k

Cartesian Force Vector

r
F=Fu=F(—)
-

Moment of a Force

M, = Fd i j k
M,=r XF=|r, ryoor
F. F, F

Moment of a Force About a Specified Axis

e uy, U
M,=uwxxF=|r. r, r
F. F, F

Simplification of a Force and Couple System

FR = EF
(MR)O = EM + EMO

Equilibrium
Particle

2F, =0,2F,=0,2F, =0
Rigid Body-Two Dimensions

2F, =0,2F,=0,ZMy, =0
Rigid Body-Three Dimensions

2F, =0,2F,=0,2F, =0

M, =0,2M, =0,2M, =0

Friction
Static (maximum) F;, = ugN
Kinetic F,=u N

Center of Gravity
Particles or Discrete Parts
XFW
W

/ ¥ dW
/ aw
Area and Mass Moments of Inertia

Iz/erA Iz/rzdm

Parallel-Axis Theorem

¥ =

Body

7=

I =1+ Ad* I =1+ md?
Radius of Gyration
1 1
k=,]— k=,/—
A m
Virtual Work
U =0
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8.4 SI Prefixes:

Multiple Exponential Form Prefix SI Symbol
1 000 000 000 10° giga G

1 000 000 10° mega M

1 000 10° kilo k
Submultiple

0.001 1073 milli m
0.000 001 10°°¢ micro w
0.000 000 001 107° nano n

8.5 Conversion Factors (FPS) to (SI)

Unit of Unit of
Quantity Measurement (FPS) Equals Measurement (SI)
Force Ib 4448 N
Mass slug 14.59 kg
Length ft 0.3048 m

8.6 Conversion Factors (FPS):

1 ft = 12 in. (inches)
1 mi. (mile) = 5280 ft
1 kip (kilopound) = 1000 1b
1 ton = 2000 1b
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8.7 Conversion Factors Table:

Conversion Factors

Multiply By To Obtain Multiply By To Obtain

acre 43560 square feet (ft?) joule (J) 9.478%10~* Btu
ampere-hr (A-hr) 3600 coulomb (C) J 0.7376 ft-1bf
angstrom (A) 1x10-10 meter (m) J 1 newton-m (N.m)
atmosphere (atm) 76 cm, mercury (Hg) J/s 1 watt (W)
atm, std 29.92 in mercury (Hg)
atm, std 14.7 1bf/in? abs (psia) kilogram (kg) 2.205 pound (Ibm)
atm, std 33.9 ft, water kef 9.8066 newton (N)
atm, std 1.013x10° pascal (Pa) kilometer (km) 3281 feet (ft)

km/hr 0.621 mph
bar 1x10° Pa kilopaseal (kPa) 0.145 Ibf/in® (psi)
barrels-oil 42 gallons-oil kilowatt (kW) 1.341 horsepower (hp)
Btu 1055 joule(J) kW 3413 Btu/hr
Btu 2.928x107%  kilowatt-hr (kWh) kW 737.6 (ft-1bf ) /sec
Btu 778 ft-1bf kW-hour (kWh) 3413 Btu
Btu/hr 3.930x10~*  horsepower (hp) kWh 1.341 hp-hr
Btu/hr 0.293 watt (W) kWh 3.6x10° joule (J)
Btu/hr 0.216 ft-Ibf/sec kip (K) 1000 Ibf

K 4448 newton (N)
calorie (g-cal) 3.968x10~%  Btu
cal 1.560x10°%  hp-hr liter (L) 61.02 in®
cal 4.186 joule (J) L 0.264 gal (US Liq)
cal /sec 4.186 watt (W) L 10x10-3 m?
centimeter (cm) 3.281x107%  foot (ft) L/second (L/s) 2.119 ft3 /min (cfm)
cm 0.394 inch (in) L/s 15.85 gal (US)/min (gpm)
centipoise (cP) 0.001 pascal-sec (Pa-s)
centistokes (cSt) 1x10°8 m?/sec (m?/s) meter (m) 3.281 feet (ft)
cubic feet/second (cfs)  0.646317 million gallons/day (mgd) m 1.094 yard
cubic foot (ﬂs) 7.481 gallon metric ton 1000 kilogram (kg)
cubic meters (m?®) 1000 Liters m/second (m/s) 196.8 feet/min (ft/min)
clectronvolt (eV) 1.602x107  joule (J) mile (statute) 5280 feet (ft)

mile (statute) 1.609 kilometer (ki)
foot (ft) 30.48 cm mile/hour (mph) 88 ft/min (fpm)
ft 0.3048 meter (m) mph 1.609 km/h
ft-pound (ft-1bf) 1.285%x107%  Btu mm of Hg 1.316x10~%  atm
fi-1bf 3.766x10~7  kilowatt-hr (kWh) mmi of H;0 9.678x107° atm
ft-1bf 0.324 calorie (g-cal)
ft-1bf 1.356 Jjoule (J) newton (N) 0.225 Ibf
ft-1bf/sec 1.818x10"%  horsepower (hp) Nm 0.7376 ft-1bf

Nm 1 joule (J)
gallon (US Liq) 3.785 liter (L)
gallon (US Liqg) 0.134 ft* pascal (Pa) 9.869x10°%  atmosphere (atm)
gallons of water 8.3453 pounds of water Pa 1 newton/m? (N/m?)
gamma (v, [') 1x107° tesla (1) Pa-sec (Pa-s) 10 poise (P)
gauss 1x10* T pound (Ibm,avdp) 0.454 kilogram (kg)
gram (g) 2.205%107%  pound (Ibm) Ibf 4.448 N

IbE-ft 1.356 N-m
hectare 1x10% square meters (m?) Ibf/in? (psi) 0.068 atm
hectare 2.47104 acres psi 2.307 ft of HyO
horsepower (hp) 42.4 Btu/min psi 2.036 in of Hg
hp 745.7 watt(W) psi 6895 Pa
hp 33000 (ft-1bf) /min
hp 550 (ft-1bf) /sec radian 180 degree
hp-hr 2544 Btu
hp-hr 1.98x10°8 ft-1bf stokes 1x10~4 m?/s
hp-hr 2.68x 108 joule (J)
hp-hr 0.746 kWh therm 1x10° Btu
inch (in) 2.54 centimeter (cm) watt (W) 3.413 Btu/hr
in of Hg 0.0334 atm W 1.341x107%  horsepower (hp)
in of Hg 13.6 in of HoO w 1 joule/sec (J/s)
in of H20 0.0361 1bf/in? (psi) weber/m? (Wh/m?) 10000 gauss
in of HyO 0.002458 atm

CTSCIVIL.COM (©)
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8.8 Cheat Sheet:

Trigonometry:

Unit Circle

For any ordered pair on the unit circle (z,y) : cosf = 2 and sinf =y

Degrees to Radians Formulas
If z is an angle in degrees and t is an angle in radians then
L

t= — and T = %
180 T

Right Triangle
For this definition we assume that 0 < # < § or 0° < 6 < 90°

&
o,
(4]
Sa ‘.

Opposite (O) ,y)

Adjacent (A)
sin(fl) = % cos(f) = % tan(f) = %
cse(f) = g sec(f) = % cot(f) = g
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Reciprocal Identities

. o snall) = L an(f) = !

sin(0) = csc(0) (0) sec(0) tan() cot(0)
1 ; 1 y

) sin(0) sl — cos(0) cotl?) = tan(0)

Pythagorean Identities

sin®(0) | cos*(0) = 1 tan®(0) | 1 = sec?(#) cot? (@) | 1 = csc?(0)

Even/Odd Formulas
sin{—¢) = — sin(0) cse(—0) = — esc(6)
cos(—0) = cos(f) sec(—0) = sec(0)
tan(—6) = — tan(@) cot(—0) = — cot(#)

Inverse Trig Functions
y =sin~'(z) is equivalent to 2 = sin(y)
y = cos }(z) is equivalent to x = cos(y)

y = tan"*(z) is equivalent to z = tan(y)

Law of Sines, Cosines and Tangents

Law of Sines

sin(a)  sin(8)  sin(y)

a b c

Law of Cosines

a® = b + ¢ — 2accos(a) b =a® + ¢ — 2bccos() = a® | b* — 2abcos(y)

Law of Tangents

—

> ta—7) b—-c:tan%(ﬂfﬁ;) a—c _tang(a—y
a+b  tang(a+f) b+c tané(ﬁ + ) at+ec  tans (a+7)

I vl e
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Mollweide’s Formula
cos 1 (a—pB)

a-+b
— P
sin 5

cC

Similar Triangles

~_
\k’

c

v Y

3

B
b

Algebra:

Arithmetic Operations

b b
ab+ac=a(b+te) a()a
c c
(8) _a o _uac
¢ be (g) b
Elg_ad—lbc a E_ad—bc
b d bd b d bd
a—bﬁh—a a+bﬁa b
c—d d-—c¢ c e e
a
ab + ac (6) ad
= b = —
o +c, a#0 (f) be
d
Exponent Properties
anam - (LTH-’H’L e an—m — l
aIIL a"mf-n,
(an)m - aﬂ-m CLO = l, a # 0

T

(17 a

@r = (L)

W T w
- 1 1 L
a = — — =aqa
uﬂ. {l._”
—n i n - n ;
G -CG) -5 =) e
a 7L

Properties of Radicals

{‘/a:a.% Vab= /a¥b
mf on nm n a {76
a = (5 =
a5

VT\/Q =@, if nis odd {/ ¥/a = |a|, if n is even
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Distance Formula

If P, = (#1,31) and P, = (x1,1;) are two points the distance between them is

d(h, B) = \/(932 —a1)" + (1 — )"

Logarithms and Log Properties

Definition

y = log, x is equivalent to z = b*

Special Logarithms
Inz = log, x natural log

logz = log,, common log where e = 2.718281828 - - -
Logarithm Properties

log, b=1 log, 1 =56 log, 6" = = bi"g’i’: =
log, (z") = rlog,z  log, (zy) = log,z +log,y  log, (%) = log, z — log, y

The domain of log, z is > 0
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Answers to Problems:

Chapter (2)
21 R=330kN, a=66.6"
2.2 P=1014N, R=196.6N
23 F =613N, F,=514N
F,=410N, F,=112.8N
F,=-122.9N, F, =86.0N
24 F =640N, F,=480N
F,=-224N, F,=-360N
F,=192N, F,=-360N
25 R=5491b, =489
26 R=2021b, =332

Chapter (3)

3.1 T,.=637kN, T,. =12.47kN

3.2 T, =12441b, T,.=115.41b

33 (a)x,. =0.739m,  x,,=0467m
(b)m=8.56kg

34 F =183kN, F, =9.60kN

35 T, =312N, T, =144N

36 p—1249N, =625

Chapter (4)

41 (a)M, =-115.71b-in
(b)a=232

42 M, =-361.771b-in

4.3 M,=-611Ib-in

44 (a)M, =3361b-in
(b)d, =28in
(c)a =54.05°

4.5 M, =-56001b-ft

4.6 F=1671b

Chapter (5)
51 N,=0N, ¥,=100N, M, =40N-m

52 N,=0N, V,=4001b, M, =-19001b-ft

5.3 N, =1.88kN, ¥/, =-2.68kN, M, =0.56kN-m
54 N,=0N, V,=-125N, M, =53.1N-m

55 N,=0N, V, =84Ib, M, =5221b-ft

5.6 N,=0N, V, =241b, M, =5221b-ft

57 N,=0N, V,=-5921Ib, M, =9501b-ft

5.8

2
yo m=2"
8

Chapter (6)
6.1, =7201b(7), F,. =-7801b(C),
F,. ==12001b(C)
6.2 g, =F, =6711b(T), F,. = F,, =—6001b(C),
F,. = F,, =—10001b(C), F, =2001b(T)
6.3 g, =10kN(T), F,, =8kN(T), F,, =-5kN(C’
64 g =-9kN(C), F,, =12kN(T)
6.5 £, =80001b(T), F,, =26001b(T),
. ==90001b(C)
6.6 £, =-20kN(C). F,, =-52kN(C)

Chapter (7)
71 X =9.60in
72 ¥

7.3
7.4

7.5
7.6

7.7

=116mm

=6.97in, ¥ =3.79in
=9.9in, ¥ =0in
=18.2mm, 5 =39.7mm
=0in, ¥ =7.48in
=9.64in, ¥ =4.60in

e

=

ST
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Glossary

Here is a simple glossary of some of the most used terminology in statics and structural

analysis courses.

A

Abrupt torlao
Absolute 3lao
Absolute Value dallaall dogs!
Absolute system of units dallaoll Olasgl pllas
Acceleration Eolud
Accuracy EER
Accurate IR
Action Jabd / Jas
Active force daadll 89all / Aadll 843l
Actual s
Addition rox [ dsLp)
Addition of forces Ssall oz
Addition of vectors Olgmioll gax
Adjacent vectors 89l Colganiall
Advantage Aas]
Aerostatics Ohll g sl9gl O3l ale / Sl !
Algebra sl ele
Algebraic Sz
Algebraic expression Az s
Algebraic sum Sz pox
Allow o
Analysis Sl
Analytical Al
Analyze Ll
Anchor bolts FLl 8liye
Anemometers 7ol B (b Slez / e gan]
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Angle

Angular

Answer

Apex
Application
Applied force
Approximate
Arbitrary shapes
Arches

Area

Area moments of inertia

Area of cross—section
Arm
Arrow
Associative
Associative addition
Associative property
Assume
Assumption
Atmospheric pressure
Available
Average
Axes

Axial

Balanced
Bar
Barrel arches

Base

gl

LglJL d3Me 93 / (S9b
Ll

83)5

LN E]

G

451yl UK
ool g8l

d>luo

(@\JJUW\ ‘AJ\s:) 4> L]l ey

52521 gaiall L
 E
4w
Gl
el oz
bl U1 Aol

L ]

Wlge

(Qde) b

Qlshul 4ot Ssle plato OIS ul 5]

e
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Beam
Beam cross section
Cantilever beam
Deep beam

Overhanging beam

Simply supported beam

Bearing
Bearing friction
Bearing stress
Behavior
Belt
Belt friction
Belts and pulleys
Bending

Bending moment

Bending moment diagram

Bending rigidity

Bending stress

Bernoulli’s principle of virtual displacements

Body
Body force
Body rotation
Bond
Boundary
Boundary conditions
Braced frame
Bracing
Bridge
British system of units

Brittle

55
550 (25l atal
(J5:6) dalan 8,08
asns 5,5
XVINVIN| SO\
Aoy 5,
bis [ Joxs
Y haiss [ o
Laall / Jaill slg=]
Hobu
el
I ol
LSS 5 Aoy
38
sl pie
sUosYl pa) Gl gl
slssy LMo
slssYl alg!
A2\ AW 535 e
POWEN|
853
ROFESIIRITR
)
d9d>
s9dodl >/ dog
(ceie) bl LB 22 )
5
Slil) 3l i plall

U

92

Dr. Alshaiji ©



College of
Technological Studies

Department of Civil
Engineering Technology

CE 161 / B 111
Engineering Statics

Buckling
Buckling load
Buckling moment
Building
Building code
Building materials

Buoyancy

Cables

Calculus
Cambered beam
Cantilever
Capstan

Cartesian

Cartesian components

Cartesian coordinates
Catenary
Center
Center line
Center of mass
Center of pressure
Center of gravity
Centroid
Centroidal axes
Chord
Circle of friction
Circular
Circular area

Circular sector

slgll
£l gV Jo
sl pye
oLy
Ll 0g36
s

saka

R
S8y Juoladl Clus
Lol & gioll 8,481
(J8) 730k /86
L=
RS
43Sl oS!
458l Ll
Jludw
5
Lrwgll b
US| 555
baall S,
a3l 555
el / d>luall 35,0
ol / dLuaall 3550 ) gone
9
S| CER U
SRl
515 d>-Lus

S5 E'Uas
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Circumference
Civil engineers
Clamps
Classification
Clockwise

Coefficient

Coefficient of friction

Coincide
Collapse
Collinear
Column
Common
Commutative property
Compatible
Complementary
Component
Composite
Compound
Compound beam
Compound truss
Compression
Computation
Computer analysis
Concave
Concentrated
Concentrated force
Concentrated load
Conceptual design
Concrete

Concrete bridges

S Ogllex
s
ol
ol plasainly Julos
s
5
55550 893
S Ja>
Sl paosatll
Bl y2)

dolnys g
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Reinforced concrete
Concurrent

Concurrent force system
Condition
Cone of friction

Conservative

Conservation of energy states

Conservative system
Constant
Constant of gravitation
Constrained
Constraint
Construction
Contact
Continuity
Continuous
Convention
Conversion
Convex
Coordinates
Coordinate systems
Coordinate transformation
Coplanar
Copper
Corner
Corresponding
Corrosion
Cosines
Coulomb theory of friction

Counterclockwise

doduo dluys-
B iy
duoliall 5 5all olUss
d> /b
A bog e
Bl WY laas>
A3l ol
Bude
e
el Jlas]
Jlasl / Juas!
)l yeseel
)ALM
G
s
e
oldlas]
Ol elas
O J g5
all 5 §
ol
oS
HEEN
K6
(cos) pledl o
I nglsS &,
deludl ylie uSe

95

Dr. Alshaiji ©



College of
Technological Studies

Department of Civil
Engineering Technology

CE 161 / B 111
Engineering Statics

Couple
Cover
Crack
Create
Creep
Critical
Cross

Cross bracing

Cross or vector product

Crush

Curvature

Curve

Customary units (U.S.)
Cutout

Cylinder

Dam

Dampers

Dead load
Debris impact load
Deck truss

Deep

Definition
Deflection
Deform
Deformable body
Deformation

Degree

Degree of freedom (DOF)

9/ O9)
slae
o
o=
o [ pSe
L‘?QJ.L"LA.” gfbj\ d.,ob

é}u.u
¢ i

.
Laale C)lasall &S5 1aY1 Olasgll
8 o0 Eokrie sy [ dclladinl o3
Gl ool

dw

Bl jolawy / Gliese
Conall Jazdl
plasll 56 &g
)l Jax) gllax
oy

Lo / Gl,=0l
SSadb 5 [ 0gad
0g4ue oz

g3

A=)

&yl dzyo
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Degree of redundancy
Degree of Statical indeterminacy

Density

Dependent

Depth

Derivative

Derived units

Design

Determinacy

Determinate

Deviation

Diagonal

Diagram

Diameter

Deferential
Differential element
Differential equation

Dimension

Dimensionless

Direct

Direction

Disk friction

Displacement

Distorted sketch

Distribute
Distributed loads
Distribution
Distribution factor (DF)
Distributive laws

Distributive property

BUSCEESN
Sl Sl pae Ao
PEIAY
Je iz
as
daiduall
daiiall Colasgll
|
((SColiwl) / sa=s
ol
Skt
e /G e
URVINAE
S5
Lol paic
Ll )] Dslasl]
dal
Sl @ude
JAW
olzl
Lordll K]
byl
Agn ey
O
aejgall JesYI
28
a2l Jole
el ol

&) Aol
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Divide
Dot products
Double
Double integration
Draw
Dry friction
Ductile
Dummy load
Durable

Dynamic

Earthquake
Eccentric

Edge

Effect

Effective
Efficiency

Elastic
Electromagnetic forces
Element
Elevations
Elongation
Empirical formula
Energy

Engineering

Engineering mechanics

Equation

Equilibrium

Equilibrium equations

PO
bode Glgniall o
T

Z935)l JoSHI
)
Bl S|
o) 6
29 Jo>

S

Jb

EILEI S

8=

Jka

BelaS

Qe

Lo lisiag ¢Sl (5531
sy

lelasyVl

Aol

Ol Vsl
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Equilibrium position

Equivalent

Equivalent systems of forces

Errors in computation
Evaluation of design
Exceed

Expansion

External

Fabrication errors

Factor
Factor of safety
Gust factor
Impact factor
Reduction factor

Failure

Feet (ft)

Fibers

Finite

Fink trusses

First moment of area

First—order analysis

Fixed

Flat roofs

Flexibility

Flexible cables

Flexural stiffness

Flood loads

Floor systems

Ol 90
13K
S 9al) L88G dalas
Gl (§ slasd
BEIESS
&g

G

el slaz]
Jele
Al Jale
Lol Jole
sl ele
il Jele
(Lol Ba>y) pud
oL
d9d>e
(Fink §£¢3) 0o
d>Lual) U9Vl o5l
d9I dzyall e Sl
ol
Dogins o
Ly el
Lyl LK
slsaYl LMo
olladl Jls
Ol )1 dalas
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Fluids

Footing

Force

Formula

Formulation of problems
Foundation

Frame

Free

Free-body diagrams (FBD)

Friction
Frictionless

Function

Gage pressure
Gaps

Gas

General

General loading

Geometrically unstable structure

Girder
Global coordinate system

Graphical

Graphical representation

Graphical solutions

Gravitation

Gravitational potential energy

Gravity

Gyration

lgall

ool /80l
@\JJ\)},@.&J\ 53_5
sl

Sladl deluo

2
2GS s

2L Gudas / Al

Laiall dw
Ol
Byt
(Lo uSe) [ ple
R V=
Ay ) 5,8 [ Apyle
Bealll LY ol
@ /gl
@9 Jeied
Ao gy Jgl>
=W VeS|
L)) dodlod! 5l
L3l

ol /ol
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Hard

Height

High
High—strength steel wires
Highway bridges
Hinge

Hollow
Homogenous
Hooke’s law
Horizontal
Horsepower (hp)
Hour (h)

Howe truss

e /e
glay)

e

89a)l ddle 3 gall DLl
ol 3okl g
Juaie

B>

Hg9n 098

B

(0ol 8u>9) Ol
(ol Bu>y) dclus

(Howe g55) 0g)lo

Hydraulics oS )Ae /A i)l Jlgll @le
Hydrostatics Kb g ydag)l le
Hydrostatic loads 35l g yaug)) SVl
Hydrostatic pressure Sogll sl
I
I-beams L)l Gy aladioy 8,eS
Idealizing structures ddle Sl
Identical &lae
Imaginary S
Impact factor AW Jele
Impeding g
Impending motion Sikg 45,>
Impending slip g 3Y5!
Improper Y e [ e e
Improper constraints dodudl & 5448l
Improper supports dodud! pe Ololendl
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Inclined B
Indeterminate S pé
Inelastic behavior Oy e Jglu
Inertia force G ) gall 88
Infinity Ll Y
Inflection Dl juas /L) / ¢l
Influence area ol dalaie
In-—plane ol gl yuis (3
Integration P oS
Intermediate Lo gin
Internal g
International J9»
International Code Council J9Ul 0l e
International System of units (SI units) lasgll S9! plaill
Isolate Jra
J
Joint e [ ALas
Joule (48Us Ba>9) Jg=>
K
K truss (K &) 09lle=
Kilo— (a9 1000) 5kS
Kilogram (kg) )R EY
Kilometer (km) (Lold 5u>9) o ghSUI
Kilonewtons (k) (old 8u>9) g3 g0 9lS
Kilopound (kip) (el Bu>9) WgbighS
Kinetic energy 48,1 Al
L
Lateral bracing @l meds / )
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Law
Law of cosines
Law of sines
Laws of motion
Length
Level
Limit
Line
Line of action
Linear
Link
Liquids
Loads
Dead loads
Earthquake loads
Flood loads
Live loads
Rain loads
Roof loads
Snow loads
Wind loads
Load intensity
Loading conditions
Loading curve
Local coordinate system
Longitudinal fibers

Low-rise buildings

Machines

RTHE
(cosines)o
(sines) g8
Ayl ol g8

Jskal

S gine

J>

Ls
Sl 86 s / Jeall las
s

Juog dal>

S5 gl

JlesT
diadl JlesYl
JiVill JlasT
ULl Jlas
dodl JesYl
Hlaedl Jlest
el Jlas
Zsll Jlos]
ZU I Dl
Jodl 80 / A8LS
Jeosil Y >
ol (i

Ldonadl LBlaY pllas

45kl LY

s Ladsie Gl

eIT
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Magnitude

Mass

Material

Mathematics
Mathematical model

Matrix

Maximum

Mechanical efficiency

Mechanics

Mechanism

Mega gram (Mg)

Member

Member coordinate system

Member stiffness
Meter (m)
Method
Metric
Middle
Mild steel
Mile (mi)
Minimum
Minute (min)
Modulus
Modulus of elasticity
Young’s modulus
Mohr s circle
Moment
Motion

Multi—force members

Ao

salo

Olus Lyl
Clate

]

RGN AT

NEWNE

aJT

(Lold Bam9) plyeline

i [ gac

sLacyl LMo
(Ueled Bu=9) o
b
SAe
Ly
Skl 3Ygall
(Lold 8u>9) Jso
RO INeS|
(Lold Ba>) dads
Jolao
By,all Jolas
Tg Jolro
(Mohr) 5,51
<
Satny 3Sy>

S 9all Bodain olic
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Negative

Neutral
Neutral axis
Neutral plane

Newton (N)

Newton’s law of gravitation

N

Newton’s three fundamental laws

Nonlinear
Normal force
Notations
Numerical

Numerical Analysis

Numerical integration

Object

One—story building
Opposite

Ordinate

Origin

Original

Parallel
Parallelogram
Partial constraints
Particle

Pascals (Pa)
Passing a section

Perimeter

Jolo
RUCNIBTESN]
SYESN[FQZIN]
(Lold Bu>9) i
Adlall igw 05318
Go Ll BN 39,6 (il g3
dundo (558
Jsell [ el
AN
D) s
P oS

(o
d>lg @lb oo (e

oSe /[ lae

i (o) Galall Gyl
Js2Il

oo

S)lge

YN (Sl gie
485 3548

(ol Bu>g) I8l
aaie I o
Jaio
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Permanent
Perpendicular
Pin—support
Plane
Planar
Point
Point of application
Point of inflection
Polygon
Position
Possible
Potential energy
Pound (Ib)
Practical
Pratt truss
Prefixes
Pressure
Pressure distribution
Pressure intensity
Primary moment
Principal axes
Principle
Product
Projection
Properties of areas
Proportion
Proportional limit
Pulleys
Pure bending

Pythagorean theorem

Sl
G3gas

(Pin) 4les

o /(5 s
o 93/ Sgtma 93

uaal
e
OSan
LalS)I a3l
(Lold Bu>y) dur
Jos
(Pratt) g9 0s/lox
Ll
%)
biall g
sl 8as
el 3=
Aoyl yglomall
S
el ol
Lliu
o Luall el
@.‘w‘d\ J=l
R
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Quality

Quantity

Radian
Radius
Range
Ratio
Reaction
Real work
Rectangular components
Reduction factor
Redundant
Redundancy
Redundant supports
Reinforced concrete
Relationship
Relative
Resistance
Resolution
Result
Resultant
Revolution
Right
Right triangle
Right-hand rule

Right-handed coordinate system

Rigid

Rivet

Q

5.)3?

(Leld 8a>9) 0Ll

shdll Caas

Sl

BETRY

i)l / o) Josdl
ariol) Aatunll b ool
il Jole

Ay [ Azl ye L)

o Al Glslas allas
ol
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Roof
Rotate
Rotated axes
Rotation
Rough surfaces
Rounding off
Rule

Safe
Scalar
Scale
Screw
Second (s)
Section
Semicircular area
Sense
Series
Service loads
Shear
Shear force
Shear force diagram
Shear stress
Sidesway
Sign conventions
Similar
Simple support
Slender
Slip

Slope

29
FHIVRFNBTIES
Obgs

L)) ol

81

0l /sacls

3t
(Lol Bu>9) dsl
cj_?-
L3> Casal dalaie
vl
Ao / ddw
alous Jlos
0”8
o)l 858
i)l 558 Lalasee
ol slg=]
PUEN[RYHR]
OB xd g3
Jlow
dawo doled
Jo=s
B3l
o
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Smooth surfaces
Solution
Space
Span
Specific weight
Spherical domes
Spring

Spring constant
Stable

Static

Static equilibrium equations

Static friction

Statically determinate
Statically equivalent set

Statically indeterminate

Static—friction force
Statics
Stationary
Stiffness
Strategies
Strength
Stress
Bearing stress
Normal stress
Shear stress
Stretch
Structural analysis
Structure
Subtraction

Sufficient conditions
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Summary

Superposition

Super—positioned forces
Super—positioned loads

Superimposing displacements

Support
Fixed
Hinged
Roller
Surface force
Suspended cables
Symbol
Symmetry

System

Table
Tangential
Taylor series
Temperature variation
Tension
Test

Theory
Thickness
Thin plates
Time

Ton (t)
Torque
Torsion

Translation
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Trapezoid
Triangle
Triangle law
Tributary areas
Trigonometry
Truss
Deck truss
Fink truss
Howe truss
K truss
Pratt truss
Vierendeel truss
Warren truss
Tsunami

Tube

Ultimate

Unbalanced moment (UM)

Underestimate

Uniformly distributed load

Unit

Universal gravitational constant

Unknowns

Unstable

Value
Variable
Vector

Velocity
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Vertical
Vierendeel truss
Virtual

Volume
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Wind e
Wires LY
Work s
Wrench Loyl Zlias
Y
Yield Egras
Yield strain Eoraxdl Jlaisl
Yield stress Eoazl slg=]
Young’s modulus Ty Jolrs
Z
Zero—force members D00l S8l I3 _oliall
112 Dr. Alshaiji ©




	Chapter (1): Units and Units System
	1.1 Units of Measurements:
	1.1.1 SI System of Units:
	1.1.2 US Customary Units:
	1.1.3 SI Units Prefixes:

	1.2 Unit Conversion:
	1.2.1 Examples:
	Example (1):
	Example (2):
	Example (3):
	Example (4):
	Example (5):
	Example (6):



	Solution:
	Solution:
	Solution:
	Solution:
	Solution:
	Solution:
	Chapter (2):  Force Vectors
	2.1 Scalars and Vectors:
	2.2 Vector Operations:
	2.2.1 Multiplication and Division of a Vector by a Scalar:
	2.2.2 Vector Addition:
	Parallelogram Method: (Tail{to{Tail)
	Triangular Method: (Head {to {Tail)

	2.2.3 Vector Subtraction:

	2.3 Forces as Vectors:
	2.3.1 Lami's Theorem:
	2.3.2 Law of Cosines and Law of Sines:
	2.3.3 Examples:
	Example (1):
	Example (2):
	Example (3):
	Example (4):
	Example (5):


	2.4 Addition of a System of Coplanar Forces Using Scalar Notation:
	2.4.1 Using “Angles”:
	2.4.2 Using “Slope”:

	2.5 Resultant of Coplanar Forces:
	2.5.1 Examples:
	Example (1):
	Example (2):
	Example (3):


	2.6 Problems:

	Chapter (3): Equilibrium of a Particle
	3.1 Condition for the Equilibrium of a Particle
	3.2 The Free{Body Diagram:
	3.2.1 Cables and Pulleys:
	3.2.2 Procedure for Drawing a Free{Body Diagram:

	3.3 Coplanar Force Systems:
	3.3.1 Examples:
	Example (1):
	Example (2):
	Example (3):
	Example (4):
	Example (5):


	3.4 Problems:

	Chapter (4): Force System Resultants
	4.1 Moment of a Force { Scalar Formulation:
	4.1.1 Moment Magnitude, Direction, Sense of Rotation, & Resultant Moment:
	Magnitude:
	Direction & Sense of Rotation:
	Resultant Moment:

	4.1.2 Examples:
	Example (1):
	Example (2):
	Example (3):
	Example (4):
	Example (5):


	4.2 Moment of a Couple:
	4.2.1 Scalar Formulation:
	4.2.2 Examples:
	Example (1):
	Example (2):
	Example (3):
	Example (4):
	Example (5):
	Example (6):


	4.3 Simplification of a Force and Couple System:
	4.4 System of Forces and Couple Moments:
	4.4.1 Examples:
	Example (1):
	Example (2):
	Example (3):
	Example (4):
	Example (5):


	4.5 Reduction of Distributed Loads:
	4.6 Loading Types:
	4.6.1 Examples:
	Example (1):
	Example (2):
	Example (3):
	Example (4):
	Example (5):


	4.7 Problems:

	Chapter (5): Elementary Structural Analysis
	5.1 Introduction:
	5.2 Loading Types:
	5.3 Support Types:
	5.4 Beam Types:
	5.5 Beam Reactions:
	5.6 Sign Convention:
	5.7 Examples:
	Example (1):
	Example (2):
	Example (3):
	Example (4):
	Example (5):
	Example (6):
	Example (7):
	Example (8):

	5.8 Internal Forces in Structural Members:
	5.8.1 Procedure for Analysis

	5.9 Examples:
	Example (1):
	Example (2):
	Example (3):
	Example (4):
	Example (5):
	Example (6):

	5.10 Problems:

	Chapter (6): Truss Analysis
	6.1 Introduction:
	6.2 Assumptions for Analysis of Trusses:
	6.3 Method of Joints:
	6.3.1 Procedure for Analysis
	6.3.2 Examples:
	Example (1):
	Example (2):
	Example (3):
	Example (4):


	6.4 Method of Sections:
	6.4.1 Procedure for Analysis:
	Example (1):
	Example (2):
	Example (3):
	Example (4):


	6.5 Problems:

	Chapter (7): Geometric Centroids
	7.1 Introduction:
	7.2 Composite Shapes:
	7.3 Procedure of Calculating Centroid Location:
	7.4 Examples:
	Example (1):
	Example (3):
	Example (4):
	Example (5):
	Example (6):

	7.5 Problems:

	Chapter (8): Useful Formulas
	8.1 Geometric Properties of Line and Area Elements:
	8.2 Center of Gravity and Mass Moment of Inertia of Homogenous Solids:
	8.3 Fundamental Equations of Statics:
	8.4 SI Prefixes:
	8.5 Conversion Factors (FPS) to (SI)
	8.6 Conversion Factors (FPS):
	8.7 Conversion Factors Table:
	8.8 Cheat Sheet:

	Answers to Problems:
	Glossary



